Rittal – The System.

Faster - better - everywhere.

Montage-, Installations- und Bedienungsanleitung

ENCLOSURES

POWER DISTRIBUTION CLIMATE CONTROL

IT INFRASTRUCTURE SOFTWARE & SERVICES

Inhaltsverzeichnis

1 1. ² 1.2 1.2 1.2 1.2	1 2 3 4 5	Hinweise zur Dokumentation Allgemeines CE-Kennzeichnung Aufbewahrung der Unterlagen Symbole in dieser Betriebsanleitung Mitgeltende Unterlagen	4 4 4 4 5
2		Sicherheitshinweise	5
3 3.2 3.2 3.4 3.4 3.4 3.4 3.4 3.4	1 2 3 4 1.1 1.2 1.3 5	Produktbeschreibung Funktionsbeschreibung Bestandteile Bestimmungsgemäße Verwendung, vorhersehbarer Fehlgebrauch Lieferumfang NH-Messmodul in den Größen NH00, 1, 2, 3 LCD Display für Monitoring Netzteil für Display und ModBus Seriennummer	7 7 7 8 8 8 8 9
4	4	Installation und Bedienung NH-Messmodul	9
4. 4.2 4.2	1 2 2.1	Antorderungen an den Installationsort Montage Anschluss des NH-Messmoduls am NH-Sicherungslasttrenner mit Abgang	9
4.2	2.2	unten Montage mit Abgang oben (nur Größe NH00)	9 13
4.3	3	Bedienung	13
4.3	3.1	Bedien- und Anzeigeelemente	14
4.3	3.2	Einschalten des NH-Messmoduls	14
4.C	5.3 ₹ ⁄1	Anzeige der LEDS	15 16
4.4	5.4 4	Konfigurationsdateien	18
4.4	1.1	Allgemeines	18
4.4	1.2	Dateistruktur	19
4.4	1.3	Seriennummer	19
4.4	1.4	Alarm.cnf	19
4.4	1.5	Logging.cnf	21
4.4 4.4	4.0 5	Zuoriff via LISB	23 24
4.5	51	Anschluss	24
4.5	5.2	Zugriff via Computer	25
4.5	5.3	Zugriff via USB-Stick	25
4.6	6	Firmware Update	26
4.6	5.1	Allgemeines	26
4.6	5.2	Firmware Update via Personal Computer	26
4.6	5.3 7	Firmware Update via USB-Stick	26
4.1	/ 7 1	Anschluss an eine CMC III Processing Unit	21 27
4.7	7.2	Bedienung über die Webseite der CMC III Processing Unit	28
5		ModBus	28
5	1	Bus-Parameter	29
5.2	2	Datentypen (DT)	29
5.2	2.1	Unterstützte Datentypen	29
5.2	2.2	Byte-Reihenfolge	30
5.0	3	Unterstützte ModBus-Befehle	30
5.3	3.1	Slave-Adresse	30
5.3	3.2	Baud-Rate	31

DE

5.3.3 5.4 5.5 5.6 5.6.1 5.6.2 5.7 5.8 5.8.1	Zeitsynchronisation	31 35 38 38 38 38 39 39 39 40
6 6.1 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	Installation und Bedienung Zubehör Installation Netzteil für Display und ModBus Installation LCD Display für Monitoring Bedienung LCD Display für Monitoring Einrichtung eines Messmoduls am LCD Display für Monitoring Anpassung der Topologie des Messmoduls Anpassung der ModBus-Baudrate Einstellung der Sprache des LCD Display für Monitoring Einstellung der Display Beleuchtung	42 42 43 43 46 46 47 47
7 7.1 7.2	Lagerung und Entsorgung Lagerung Entsorgung	47 47 47
8 8.1 8.1.1 8.1.2 8.2.1 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.5	Technische Daten Umgebungsbedingungen Umgebungsbedingungen für NH-Messmodul Umgebungsbedingungen für Netzteil für Display und ModBus Umgebungsbedingungen für Display für Monitoring Elektrische Daten Elektrische Daten NH-Messmodul Elektrische Daten NH-Messmodul Schnittstellen Schnittstellen NH-Messmodul Schnittstellen NH-Messmodul Schnittstellen NH-Messmodul Messwerte Messgenauigkeit (nach EN 61557-12)	48 48 48 49 49 50 50 50 51 51 51
9	Service	52

1 Hinweise zur Dokumentation

1.1 Allgemeines

Die Bezeichnung NH-Messmodul beschreibt jeweils das NH-Messmodul in der entsprechenden Größe NH00, 1, 2 oder 3.

Die Bezeichnung CMC III PU ist kurz für CMC III Processing Unit und CMC III Processing Unit Compact. Ist nur eines der beiden Produkte betroffen, ist dies entsprechend gekennzeichnet.

Das NH-Messmodul wird softwareseitig, insbesondere in der CMC III PU, unter dem Kurznamen SES (Smart Energy System) angezeigt.

1.2 CE-Kennzeichnung

Rittal GmbH & Co. KG bestätigt die Konformität des NH-Messmoduls zur Niederspannungsrichtlinie 2014/35/EU und zur EMV-Richtlinie 2014/30/EU. Eine entsprechende Konformitätserklärung wurde ausgestellt und steht auf der Webseite von Rittal zum Download bereit.

CE

1.3 Aufbewahrung der Unterlagen

Die Montage-, Installations- und Bedienungsanleitung sowie alle mitgeltenden Unterlagen sind ein integraler Bestandteil des Produkts. Sie müssen den mit dem Gerät befassten Personen ausgehändigt werden und müssen stets griffbereit und für das Bedienungs- und Wartungspersonal jederzeit verfügbar sein!

1.4 Symbole in dieser Betriebsanleitung

Folgende Symbole finden Sie in dieser Dokumentation:

Gefährliche Situation, die bei Nichtbeachtung des Hinweises unmittelbar zu Tod oder schwerer Verletzung führt.

Warnung!

Gefahr!

Gefährliche Situation, die bei Nichtbeachtung des Hinweises zu Tod oder schwerer Verletzung führen kann.

Vorsicht!

Gefährliche Situation, die bei Nichtbeachtung des Hinweises zu (leichten) Verletzungen führen kann.

Hinweis:

Kennzeichnung von Situationen, die zu Sachschäden führen können.

Dieses Symbol kennzeichnet einen "Aktionspunkt" und zeigt an, dass Sie eine Handlung bzw. einen Arbeitsschritt durchführen sollen.

1.5 Mitgeltende Unterlagen

- Montageanleitung NH-Messmodul
- Montage-, Installations- und Bedienungsanleitung CMC III Processing Unit/ CMC III Processing Unit Compact

→ Hinweis:

Die mitgeltenden Unterlagen können über die Webseite http://rittal.de bezogen werden.

2 Sicherheitshinweise

med Rittal komponenter eller af Rittal godkendte tredjeparts komponenter som beskrevet i brugervejledningerne for systemer såsom Mini-PLS, RiLine samt Ri4Power. Brugen er kun tilladt inden for de angivne effektivitetsbegrænsninger.

LE I gcomhréir le EN 50110, níor cheart d'aon duine seachas leictreoir oilte, nó pearsanra oilte faoi bhainisteoireacht agus maoinseacht leictreora oilte, obair a dheanamh ar threalamh leictreacht Tá an chomhpháirtha no amhpháirteanna formheasta i gcomhair úsáide i gcórais ísealvoltais i gcomhréir leis an Treoir 2014/35/AE maidir le hisealvoltas agus ní ceadmhach iad a úsáid ach amháin i dtaca le comhpháirteanna Rittal-bhrandáilte nó comhpháirteanna Rit4Powre dre éir mar a thuainsíchear sna treoracha oibrúcháni. Ní cheadaltear oibríú ach amháin laistigh de na teorainneacha acmhainne a shonraitear.

Prace prze detktyków (wg EN 5010) lub przez przezkolony personel pod kierownictwem i nadzorem elektryka. Użycie zgodne z przeznaczeniem tylko w instalacjach niskiego napięcia w ramach dyrektywy niskonapięciowej 2014/35/WE. Dozwolone wyłączenie w polączeniu z własnymi oraz z dopusz-czonymi przez Rittał komponentami innych producentów w ramach opisanych w instrukcji eksploatacji systemów Mini-PLS, RiLine i Ri4Power. Użytkowanie jest dozwolone tylko w podanym zakresie mocy.

Práce na elektrických zařizeních smí provádět jen kvalifikovaný elektrikář (podle normy ČSN EN 50110) nebo zaškolený personál pod vedením a dozorem kvalifikovaného elektrikářel Použití tohoto komponentu (těchto komponentů) je dovoleno v souladu se stanoveným účelem, který odpovídá použití v nizkonapěťových zařizeních v rámci směrnice o nizkém napěti 2014/35/EU a výhradně ve sopioní s vlastnímí komponenty společnosti Rittal a komponenty cizích výrobců, které schválila společnost Rittal, v systémech Mini-PLS, RiLine a Ri4Power, definovaných v provozním návodu. Provoz je přípustný jen v uvedených mezich výkonu.

ВС Дейностите по електрическите съоръжения трябва да се извършват само от специалист-електротежник (съгласно EN 50110) или от инструктиран персонал под ръководството и надзора на специалистелектротежник! Употребата по предназначение на този компонент(и) е използването му в съоръжения с ниско напрежение в рамките на Директива 2014/35/ЕС относно инсталации за ниско напрежение и разрешено само с компоненти на Ritfal или с одобрени от Ритал компоненти, произодовство на трети страни, описани в ръководството за експлоатация на системи Mini-PLS, RiLine и Ri4Power. Експлоатацията е разрешена само в рамките на посочените моцностти.

рамклю на посочениле мощност ни. водоты на электроустановках допускается проводить только специалистам по электрике (согл. EN 50110) или обученному персоналу под надзором специалистов по электрике! Назначением данного компонента (компонентов) является использование в низковольтных комплектных устройствах в соответствии с директивой по низковольтному оборудованию 2014/35/EU, а также исключительно в сочетании с собственными компонентами. Rittal и одобренными Rittal сторонними компонентами, в рамках описанных в руководстве по эксплуатации систем Mini-PLS, RiLine и Ri4Power. Эксплуатация допускается только в рамках указанного

GI οι εργασίες σε ηλεκτρικές εγκαταστάσεις επιτρέπεται να εκτελούνται μόνον από εκπαιδευμένο ηλεκτρολόγο (σύμφωνα με το EN 5010) ή από προαυπικό που έχει λάβει σχειτική ενημέρωση και εργάζεται υπό τη διεύθυνοη και επιβλεψη ηλεκτρολόγου! Προβλεπόμενη θεωρείται η χρήση αυτού(ων) του(των) εξαρτήματος(ων) σε εγκαταστάσεις χαμηλής τάσης, όπως ορίζεται στην Οδηγία Χαμηλής Τάσης 2014/35/EF, και αποκλειστικά σε συνδυασμό με παρελκόμενα εξαρτήματα της Rittal ή εξαρτήματα άλλων κατασκευαστών που έχουν εγκριθεί από την Rittal για χρήση εντός των συστημάτων Mini-PLS, RiLine και Ri4Power που περιγράφονται στις οδηγίες ξευτουργίας. Η λειτουργία επιτρέπεται μόνον εντός των αναφερόμενων ορίων ισχύος.

RO Lucrările la instalațiile electrice pot fi realizate numai de un electrician calificat (conform EN 50110) sau de personal instruit, sub îndrumarea și supravegherea nuri electrician calificat! Utilizarea conformă cu destinația a acestor componente este folosirea în instalații de joasă tensiune, în ternelui Directivei pentru joasă tensiune 2014/35/UE și este permisă exclusiv în legătură cu componentele proprii Rittal, precum și cu componentele externe autorizate de Rittal, în cadrul sistemelor descrise în manualul de utilizare, Mini-PLS, RiLine și Ri4Power. Operarea este permisă numai între limitele de putere specificate.

HB Radove na elektroinstalacijama smije provoditi samo elektrotehničar (sukladno normi EN 50110) ili kvalificirano osoblje pod nadzorom elektroteh-

RITTAL GmbH & Co. KG

ENCLOSURES

Postfach 1662 · D-35726 Herborn Phone: +49(0)2772 505-0 · Fax: +49(0)2772 505-2319 E-Mail: info@rittal.com · www.rittal.com

FRIEDHELM LOH GROUP

ničaral Namjenska uporaba tih komponenti je uporaba na niskonaponskim instalacijama sukladno Direktivi o električnoj opremi namijenjenoj za uporabu unutar određenih naponskih granica 2014/35/EU i isključivo s komponentama tvrtke Rittali komponentama drugog prozvodača koje je tvrtka Rittali dodbrila te su navedene u uputama za uporabu opisanih sustava Mini-PLS, RiLine i Ri4Power. Rad je dozvoljen samo unutar navedenih ograničenja učinkovitosti.

LUU Az elektromos berendezéseken és eszközőkön történő munkavégzést csak (az EN 50110 szerinti) elektromos szakember, vagy elektromos szakember veztésével és felügyelete mellett dolgozó beosztott végezhetli Ezeknek a komponensehnek a rendeltetésszerű használata a 2014/35/EU kisfeszültségű berendezésekre vonatkozó irányely szerinti kisfeszültségű berendezésekben történő felhasználás, és kizárólag a Rittal saját gyártmányú, illetve a Rittal által jóváhagyott más gyártmányú komponensekkel együtt, az üzemeltetési kézikönyvben leírt Mini-PLS, RiLine és Ri4Power rendszerekben történő alkalmazás megengedett. Az üzemeltetés csak a megadott teljesítményhatárokon belül megengedett.

Darbus su elektriniais įrenginiais gali atlikti tik kvalifikuotas elektrikas (pagal EN 50110) arba apmokyti darbuotojai vadovaujant ir prižiurint kvalifikuotam elektrikui Išs (rė) komponentas (rė) yra naudojamas žemos įtampos įrenginiuose vadovaujantis žemos įtampos direktyva 2014/35/ES ir tik kartu su "Rittal" komponentais arba "Rittal" patvirtintais kitais komponentais, aprašytais "Mini-PDLS", "Ritlom" ir "Ri4Powe" sistemų naudojimosi instrukcijose. Galima eksploatuoti tik nurodytame galios diapazone.

EE Elektriseadmetega tohivad töötada ainult kvalifitseeritud spetsialistid (standardi EN 50110 järgi) või teised töötajad nende juhtimise ja järelevalve all Komponend/komponentide kasutamine kirjeldatud süsteemides on lubatud kooskõlas madalpingedirektiiviga 2014/35/EL ja üksnes Rittali või Rittali poolt heakskiidetudkomponentidega kasutusjuhendi järgi, Mini-PLS, Riitaja RI4Pover. Käitamine on lubatud ainult määratud võimsuste apiires.

Darbus ar elektrolekärtäm drikst veikt tikai elektriki (saskaņā ar standartu EN 50110) vai apmāciti darbinieki elektrika vadībā un uzraudzībāl Šos komponentus ir paradzāts lietot zemsprieguma iekārtās saskaņā ar Zemsprieguma direktīvu 2014/35/ES un tikai kopā ar Rittal ražotaju komponentium iletošanas instrukcijā aprakstrilas sistēmās Mini-PLS, RiLine un Ri4Power. Ekspluatācija ir atļauta tikai norādītajā jaudas diapazonā.

Dela na električnih inštalacijah lahko izvajajo samo usposobljeni strokovnjaki za elektrotehnična dela (v skladu s standardom EN 50110) ali izučeno osebje pod vodstvom in nadzorom usposobljenih strokovnjakov za elektrotehnična delal Te komponente so namenjene uporabi v nizkonapetostnih inštalacijah v skladu z direktivo 2014/35/EU o električni oprami, ki je načrtovana za uporabo znotraj določenih napetostnih mej. Uporaba je dovoljena izključno v povezavi s komponentami podjetja Rittal in drugimi komponentami, ki ji na je odobrilo podjetje Rittal, v sisternih Mini-PLS, RiLine in Ri4Power, opisanih v navodilih za uporabo. Dovoljeno je samo obratovanje znotraj navedenih mej zmogljivosti.

2105gnvosu.
SK Práce na elektrických zariadeniach smie vykonávať len kvalifikovaný elektrickí (podľa EN 50110) alebo vyškolený personál pod vedením a dohľadom kvalifikovaného elektrikáral Túto súčiastku (tieto súčiastky) je možné používať len v súlade s určením, t. j. v nizkonapäťových systémoch v rámci smerajú 2014/35/EU a vylučne v spojení so súčiastkami Ittal alebo súčiastkami tretich strán, ktoré schválila spoločnosť Rittal, v rámci systémov Mini-PLS, RiLine a Ri4Power, opísaných v návode na použitie. Prevádzka je povolená len v rámci straovených výkonových limitov.

O trabalho efetuado em sistemas elétricos deve ser feito por eletricistas autorizados e especializados (de acordo com a norma EN 50110) ou por técnicos trabalhando sob supervisãol O(s) componente(s) podem ser utilizados em instalações de distribuição elétrica de baixa tensão que atendem à diretriz da União Europeia 2014/35/UE que regulamenta esses equipamentos e apenas com produtos próprios da Rittal ou de outras marcas aprovadas pela Rittal para uso nos sistemas Mini-PLS, RiLine e Ri4Power, conforme especificado no devido manual de instruções. Somente é permitido utilizar o equipamento la faixa de potência permitida.

Xoghol fuq apparat tal-elettriku jista' jsir biss minn elektrixin imharreğ (skort EN 50110) jew minn persunal imharreğ taht il-gestjoni u s-supervizioni ta' elektrixin imharreğl Luzu approvat tal-komponent(j) huwa fisistemi ta' vultağı baxx b'mod konformi tad-Direttiva dwar il-Vultağı Baxx 2013/35/UE b'rabat esklusiva ma' komponenti tad-dirta Rittal jew ma' komponenti ta' parti terza approvati minn sistemi ta' Rittal Mini-PLS, RiLine u Ri4Power kif deskritt fl-istruzzjonijiet dwar it-thaddim. It-thaddim jista' jsir biss fil-limiti tal-kapačıta didikarata.

R00/D-0000 00000 518

POWER DISTRIBUTION CLIMATE CONTROL IT INFRASTRUCTURE SOFTWARE & SERVICES

RITTAL

For further information: www.rittal.com

3 Produktbeschreibung

3.1 Funktionsbeschreibung

Das NH-Messmodul ist ein Zubehörprodukt für Rittal NH-Sicherungslasttrenner zum Messen, Erfassen und Auswerten elektrischer Leistungsdaten.

Abb. 1: Funktionsbeschreibung NH-Messmodul

3.2 Bestandteile

Das Gerät besteht aus einem Grundteil und einer Berührungsschutzabdeckung. Der Grundteil enthält die Messelektronik, 3 Stromwandler, 3 Spannungsabgriffe (integriert), 2 Status LEDs und folgende Anschlüsse:

- 2 x CAN-Bus (durchgeschleift)
- 2 x ModBus (durchgeschleift)
- USB-Anschluss
- 2-poliger Stecker (N oder Brücke L2+N)
- 3 Leiteranschlüsse (Rahmenklemmen)

Die Berührungsschutzabdeckung besteht aus der Abdeckung, einem Lichtwellenleiter, einer Klappe und einem darin befestigten USB Kabel.

3.3 Bestimmungsgemäße Verwendung, vorhersehbarer Fehlgebrauch

Hinweis:

Das NH-Messmodul ist ein Gerät der Klasse A. Dieses Gerät kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen durchzuführen.

Um das Gerät mit der CMC III PU bestimmungsgemäß zu verwenden, nutzen Sie bitte den beiliegenden Ferrit und montieren Sie diesen zwischen CMC III PU und NH-Messmodul.

Das NH-Messmodul ist gemäß der Funktionsbeschreibung (vgl. Abschnitt 3.1 "Funktionsbeschreibung") ein elektrisches Prüf- und Messgerät und nur zur Verwendung der in der folgenden Tabelle zeilenweise dargestellten Kombination zugelassen:

NH-Messmodul	Art. Nr.	darf an diese Artikel montiert werden		
		Größe	RiLinie60 Art. Nr.	
NH00 150A	SV9343.070	NH00	9343.000 9343.020 9343.040	
NH1 250A	SV9343.170	NH1	9343.100 9343.120 9343.140	
NH2 400A	SV9343.270	NH2	9343.200 9343.220 9343.240	
NH3 600A	SV9343.370	NH3	9343.300 9343.320 9343.340	

Tab. 1: Zugelassene Kombinationen

Das LCD Display für Monitoring (SV9343.410) dient zur Konfiguration und direkten Anzeige der Momentanwerte und darf nur mit dem zugehörigen Netzteil für Display und ModBus (SV9343.400) an allen Größen des NH-Messmoduls betrieben werden.

3.4 Lieferumfang

3.4.1 NH-Messmodul in den Größen NH00, 1, 2, 3

Die Artikel SV9343.070, SV9343.170, SV9343.270, SV9343.370 umfassen folgenden Lieferumfang:

- NH-Messmodul der entsprechenden Größe NH00, 1, 2 oder 3
- gekürzte Berührungsschutzabdeckung
- 2-poliger Stecker mit vormontierter Brücke
- 2-poliger Stecker mit einem bestückten Kontakt zum Anschluss von N
- Montageanleitung
- Sicherheitshinweise
- Zweites Typenschild mit Seriennummer
- Ferrit zur Verwendung mit CMC III

3.4.2 LCD Display für Monitoring

Der Artikel SV9343.410 umfasst folgenden Lieferumfang:

- LCD Display mit RJ 11/12-Buchse
- RJ 12-Kabel, Länge 2 m
- Montageanleitung
- Sicherheitshinweise

3.4.3 Netzteil für Display und ModBus

Der Artikel SV9343.400 umfasst folgenden Lieferumfang:

- Netzteil für Display und ModBus mit 2x RJ 45-Buchsen, RJ 11/12-Buchse,
- 2-polige Netzanschlussbuchse
- Adapterkabel mit 1x RJ 45-Stecker und 1x RJ 45-Buchse
- 2-poliger Netzanschlussstecker
- Montageanleitung
- Sicherheitshinweise

Hinweis:

Das beigelegte Adapterkabel ändert die Pinbelegung der Stecker. Der Adapter muss entsprechend der Beschreibung in Abschnitt 6.1 "Installation Netzteil für Display und ModBus" verwendet werden.

3.5 Seriennummer

Die Seriennummer des Geräts wird für die Konfiguration benötigt. Sie finden die Seriennummer auf dem Typenschild, das sich auf der linken Seite des NH-Messmoduls befindet. Ein weiteres Typenschild liegt bei, auch auf diesem ist die Seriennummer zu finden.

Hinweis:

Die in der CMC III PU angezeigte Seriennummer ist nicht für die Konfiguration via USB und ModBus relevant. Bitte verwenden Sie die Seriennummer auf dem Typenschild.

Abb. 2: Typenschild

Legende

1 Position Seriennummer

4 Installation und Bedienung NH-Messmodul

Das NH-Messmodul ist entsprechend der beiliegenden Montageanleitung (vgl. Abschnitt 4.2 "Montage"), den Sicherheitshinweisen (vgl. Abschnitt 2 "Sicherheitshinweise") und der bestimmungsgemäßen Verwendung (vgl. Abschnitt 3.3 "Bestimmungsgemäße Verwendung, vorhersehbarer Fehlgebrauch") zu montieren.

4.1 Anforderungen an den Installationsort

Um eine einwandfreie Funktion des Geräts zu gewährleisten, sind die in Abschnitt 8 "Technische Daten" genannten Bedingungen für den Installationsort des Geräts zu beachten.

Elektromagnetische Beeinflussung

Das Gerät ist störfest gemäß EN 61000-6-2, die Störaussendung gemäß EN 61000-6-4.

4.2 Montage

4.2.1 Anschluss des NH-Messmoduls am NH-Sicherungslasttrenner mit Abgang unten

Hinweis:

Drehmomentangaben entnehmen Sie bitte den Anschlussklemmen des entsprechenden Moduls.

Entriegeln Sie mit einem Schraubendreher die Schutzabdeckung des NH-Messmoduls und nehmen Sie diese ab.

Öffnen Sie die Sicherungsaufnahme des NH-Sicherungslasttrenners und entfernen Sie diese.

Entfernen Sie die Berührungsschutzabdeckung durch Entriegeln mit einem Schraubendreher und Herausziehen.

Befestigen Sie die Berührungsschutzabdeckung durch Aufrasten am oberen und unteren Ende des NH-Sicherungslasttrenners. Bringen Sie die beim NH-Messmodul mitgelieferte verkürzte Berührungsschutzabdeckung an der Seite an, an der Sie das NH-Messmodul anschließen.

Schieben Sie das NH-Messmodul mit den Anschlussleitern in die Rahmenklemmen des NH-Sicherungslasttrenners und befestigen Sie diese mit dem vorgegebenem Werkzeug und Drehmoment.

Rasten Sie die Berührungsschutzabdeckung des NH-Sicherungslasttrenners ein.

DE

Rasten Sie die Sicherungsaufnahme des NH-Sicherungslasttrenners ein und schließen Sie diese.

Brechen Sie abgangsseitig am NH-Messmodul die Abdeckungen des Leiterdurchgangs mit geeignetem Werkzeug heraus und entsorgen Sie diese.

Rasten Sie nach Anschluss der Abgangskabel die Schutzabdeckung des NH-Messmoduls wieder auf.

Stecken Sie den Mini-USB-Stecker in die Buchse rechts unten am NH-Messmodul.

Bei einem Dreileitersystem müssen Sie den mitgelieferten 2-poligen Stecker mit der 2-poligen Verbindungsbrücke in die vorgesehene Buchse stecken.

Bei einem Vierleitersystem mit Neutralleiter müssen Sie den Stecker ohne Brücke einstecken und den mit "N" gekennzeichneten Anschluss-Pin mittels eines Kabels (1,5 mm²) mit der Neutralleiter-Schiene verbinden.

Hinweis:

Passende Leiterschutzklemmen finden Sie im Bereich "RiLine Zubehör" im aktuellen Rittal Handbuch.

4.2.2 Montage mit Abgang oben (nur Größe NH00)

Das NH-Messmodul in Größe NH00 kann auch mit Abgang oben an dem NH-Sicherungslasttrenner montiert werden. Bei dieser Montage wird das Messmodul um 180° gedreht eingebaut und somit L1 und L3 getauscht.

Stellen Sie dies in der Konfiguration ein, um die Abbildung der Messwerte entsprechend anzupassen (via ModBus, CMC III PU oder USB).

4.3 Bedienung

Das NH-Messmodul erfasst die in den technischen Daten angegebenen Werte (vgl. Abschnitt 8.4 "Messwerte"), die auf einem internen Speicher abgelegt werden. Die Daten lassen sich via USB-Schnittstelle abrufen (vgl. Abschnitt 4.5 "Zu-

DE

griff via USB"). Die Momentanwerte und die gespeicherten Werte können mit der CMC III PU über CAN-Bus (vgl. Abschnitt 4.7 "CMC III (CAN-Bus)") und via Mod-Bus RTU (vgl. Abschnitt 5 "ModBus") abgerufen werden.

Bitte prüfen Sie, ob Sie das NH-Messmodul mit 3 oder 4 Leitern betreiben. Im 3-Leiter-Betrieb müssen die Eingänge L2 und N gebrückt werden (vgl. Abschnitt 4.3.1 "Bedien- und Anzeigeelemente"). Im 4-Leiter-Betrieb muss an Anschluss 2 der Neutralleiter angeschlossen werden (vgl. Abschnitt 4.3.1 "Bedienund Anzeigeelemente"). Nutzen Sie hierfür bitte den beigelegten Stecker mit nur einem bestückten Kontakt, um einen Anschlussfehler zu verhindern. Der genaue Anschluss ist in der Montageanleitung (vgl. Abschnitt 4.2 "Montage") dargestellt. Der jeweilige Betriebsmodus muss in der Konfiguration via USB, CMC III PU, ModBus oder LCD Display für Monitoring eingestellt werden.

4.3.1 Bedien- und Anzeigeelemente

Abb. 3: Bedien- und Anzeigeelemente

Legende

- 1 L2
- 2 N
- 3 ModBus RTU durchgeschleift (vgl. Abschnitt 5)
- 4 analog Pos. 3
- 5 CAN-Bus (CMC III PU) durchgeschleift (vgl. Abschnitt 4.7)
- 6 analog Pos. 5
- 7 Mini USB-OTG (vgl. Abschnitt 4.5)
- 8 LED-Anzeige (vgl. Abschnitt 4.3.3)

4.3.2 Einschalten des NH-Messmoduls

Das NH-Messmodul schaltet bei Stromversorgung automatisch ein. Die Stromversorgung kann auf zwei Wegen erfolgen, die sich nicht ausschließen:

- 1. Selbstversorgung über die Phasen L1–L2
- 2. Stromversorgung über die CMC III Processing Unit über CAN-Bus

Hinweis:

Eine Stromversorgung über ModBus ist **nicht** möglich.

Die Stromversorgung kann via CAN-Bus erfolgen. 24 VDC liegen auf den Pins 3 und 6, GND auf den Pins 4 und 5. Es ist hierbei ausreichend die Pins 3 und 4 zu

belegen. Eine Plug-and-Play-Lösung bietet das Netzteil für ModBus und Display mit beiliegendem Adapterkabel.

, Hinweis:

Die Messelektronik des NH-Messmoduls benötigt die Phasen L1 und L2. Bitte beachten Sie dies insbesondere für automatisierte Abläufe.

4.3.3 Anzeige der LEDs

Das NH-Messmodul nutzt zwei LEDs zur Statusanzeige. Es werden die Kommunikations- und Betriebszustände signalisiert.

Im Normzustand werden CAN-Bus- (LED 1) und ModBus-Kommunikation (LED 2) über die LEDs angezeigt.

Status	LED 1	LED2
Kommunikation	Grün	Grün
Kommunikationsfehler	Rot	Rot

Tab. 2: Statusanzeige der LEDs zur Kommunikation

Bei Warnungen, Alarmen, Temperatur- und Grenzwertüberschreitungen (für das NH-Messmodul) werden die LEDs für Störmeldungen genutzt.

Status	LED 1	LED2
Generelle Warnung / Alarm	Beide LEDs blinken synd und orange (1 Sekunde)	chron abwechselnd rot

Tab. 3: Statusanzeige der LEDs zur Kommunikation

Bei USB-Kommunikation werden die LEDs für die entsprechenden Statusmeldungen verwendet.

Status	Beschreibung	LED 1	LED 2
Verbunden	Verbindung steht, keine Aktivität	Orange	Grün
Lesen	Der Master liest Daten	Orange blin- kend (1/s)	Grün
Schreiben	Der Master schreibt Daten	Orange blin- kend (1/s)	Rot

Tab. 4: Statusmeldungen bei USB-Kommunikation

Fehler in der USB-Kommunikation werden folgendermaßen angezeigt.

Status	Beschreibung	LED 1	LED 2
Fehler	Verbindungsfehler (de- fekter USB-Stick etc.)	Orange	Rot blinkend (1/s)
Nicht verbunden, Da- tenvalidierung	Suche nach validen Dateien (.CNF / .IMG)	Orange	Orange
Nicht verbunden, Da- tenverarbeitung	Daten werden ver- schoben	Orange	Orange blin- kend (1/s)
Nicht verbunden, Da- teifehler	Konfiguration: defekte Datei, Parameter nicht in Ordnung	Beide LEDs blink Sekunden.	en orange für 10

Tab. 5: Statusmeldungen bei Fehlern in der USB-Kommunikation

4.3.4 Spannungsfreischaltung

Die Elektronik des NH-Messmoduls kann unter anderem für eventuell vorgeschriebene Hochspannungsprüfungen spannungsfrei geschaltet werden. ■ Stellen Sie hierfür sicher, dass die Anlage ausgeschaltet ist.

Warnung! Ist das NH-Messmodul angeschlossen, ist die Elektronik bis maximal 4 kV balasthar. Die in den folgenden Schritten be-

maximal 4 kV belastbar. Die in den folgenden Schritten beschriebene Spannungsfreischaltung erlaubt eine Belastung bis maximal 6 kV.

Entfernen Sie die Abdeckung.

Ziehen sie den unteren Teil des NH-Messmoduls mit den Kommunikationsanschlüssen nach unten.

■ Montieren Sie die Berührungsschutzabdeckung wieder.

Stellen Sie sicher, dass das andere Ende des in der Klappe befindlichen USB-Adapters am NH-Messmodul angeschlossen ist.

Die Elektronik ist nun spannungsfrei und das NH-Messmodul kann mit bis zu 6 kV belastet werden.

Gehen Sie in umgekehrter Reihenfolge vor, um die Messelektronik wieder anzuschließen.

4.4 Konfigurationsdateien

4.4.1 Allgemeines

Die grundlegende Konfiguration des NH-Messmoduls erfolgt standardmäßig über die USB-Schnittstelle. Bitte beachten Sie, dass dies nicht notwendig ist, wenn Sie das NH-Messmodul mit einer CMC III PU nutzen. Auch eine Konfiguration über ModBus ist möglich.

Die Konfiguration erfolgt mit drei verschiedenen Konfigurationsdateien, die im Folgenden beschrieben werden.

Die Dateien, die vom Gerät beim ersten Start oder nach Löschung durch den Nutzer generiert werden, tragen folgende Dateinamen:

- Alarm-Konfiguration: ALARM.CNF
- Logging Konfiguration: LOGGING.CNF
- System Konfiguration: SYSTEM.CNF

Neben diesen Dateinamen werden auch folgende Dateinamen unterstützt:

- ALA*.CNF bzw. ALA*.cnf
- LOG*.CNF bzw, LOG*.cnf
- SYS*.CNF bzw. SYS*.cnf

Dies erlaubt die freie Vergabe von bis zu 5 Zeichen, zum Beispiel für Versionen oder zur Unterscheidung der Konfiguration für verschiedene NH-Messmodule.

Die Datei für **Alarm-Konfigurationen** beinhaltet die Werte für Alarme und Warnungen. Diese Konfiguration ist limitiert auf sieben verschiedene Gruppen von Alarmen/Warnungen, die direkt mit den gemessenen Werten in Zusammenhang stehen.

Das Logging-Intervall und die Liste der zu loggenden Werte wird durch die **Logging-Konfiguration** vorgegeben. Die Werte werden im nicht flüchtigen Datenspeicher des NH-Messmoduls gespeichert. Wenn keine (gültige) Logging-Konfigurationsdatei gefunden wird, startet das Logging mit der standardmäßigen Logging-Einstellung.

Die **System-Konfiguration** beinhaltet die grundlegende Konfiguration des NH-Messmoduls, wie z. B. Bus-Adressen.

In den Konfigurationsdateien kann mit dem Kommentaroperator "//" ein Kommentar eingefügt werden.

Dem letzten zu interpretierenden Parameter muss ein Zeilenumbruch folgen, so dass die letzte Zeile leer ist.

4.4.2 Dateistruktur

Hinweis:

Die Uhrzeit für das USB-Logging kann via ModBus bzw. das im Zubehör erhältliche Display eingestellt werden.

Das NH-Messmodul ist mit einem lokalen FAT16-Dateisystem auf Flash-Speicher ausgestattet. Dieser Speicher wird genutzt um Konfigurations-, Log- und Firmware Update-Dateien zu speichern. Die Dateinamen sind auf eine Länge von 8.3 begrenzt, das heißt:

 Der Dateiname darf aus maximal 8 alphanumerischen Zeichen bestehen (Groß- und Kleinbuchstaben und Zahlen).

- Dann folgt ein Punkt und die Endung mit genau 3 Zeichen.

Der Flash-Speicher ist in 2 Partitionen mit folgender Dateistruktur aufgeteilt: SYSTEM:

```
:\SYSTEM\CONFIG
```

	ALA**	* * *	.cnf
	LOG**	* * *	.cnf
	SYS**	* * *	.cnf
:	\SYSTEI	N/UI	PDATE
	FWSL*	* * *	.img

DATA:

:\DATA\DATA

```
L*******.csv
:\DATA\ALARMS
A******.csv
:\DATA\SYSTEM
```

S******.csv

Der Ordner "\CONFIG" beinhaltet die Konfigurationsdateien des NH-Messmoduls. Alle Konfigurationsdateien können über die Endung *.CNF (oder *.cnf) identifiziert werden.

Das NH-Messmodul generiert diese Dateien mit den aktuellen Einstellungen im ANSI-Format. Für eine Konfiguration wird auch das Format UTF-8 unterstützt.

4.4.3 Seriennummer

Grundsätzlich gilt für die Konfigurationsdateien, dass eine Seriennummer angegeben werden muss. Diese Nummer finden Sie auf dem Typenschild (vgl. Abschnitt 3.5 "Seriennummer") oder in den vom Messblock generierten Konfigurationsdateien. Alle Konfigurationsdateien müssen eine Zeile in folgendem Format enthalten:

- SERIAL;XxXxXxXxXxX (10-stellige numerische Seriennummer)

Fehlt diese Zeile, wird die Konfigurationsdatei nicht vom NH-Messmodul akzeptiert.

Hinweis:

Es besteht die Möglichkeit in jeder Konfigurationsdatei den Platzhalter 0000000000 (10x "Null") als Platzhalter einzutragen. Diese Konfigurationsdatei wird von **jedem** NH-Messmodul akzeptiert. Nutzen Sie diese Funktion mit Bedacht!

4.4.4 Alarm.cnf

```
// Symbols:
```

```
// AL: alarm low, AH: alarm high
```

19

DE

// WL: warning low, WH: warning high // HY: hysteresis // U: phase-phase voltage // VN: phase-neutral voltage+ // I(N): current (neutral) // P/Q/S: active/reactive/apparent power UAL;0 UAH;45000 UWL;0 UWH;45000 UHY;10 ...

Alle Werte müssen mit Faktor 100 eingetragen werden, bzw. auf 2 Nachkommastellen genau, aber ohne Komma. Eine Ausnahme bildet die Angabe der Hysterese, die als Prozentwert ("%") angegeben wird.

Beispiel:

Das NH-Messmodul soll bei einer Spannungsüberschreitung von 410,32 Volt warnen. Dies wird mit folgender Eingabe erreicht: "UWH;41032".

In der folgenden Tabelle werden alle Konfigurationsparameter beschrieben. Hier entspricht der Nennstrom I_{nom} je nach Ausführung des NH-Messmoduls 150 A, 250 A, 400 A bzw. 600 A.

Name	Beschreibung	Min	Max
UAL	Phase-Phase Spannung Alarm LOW	0	45000
UAH	Phase-Phase Spannung Alarm HIGH	0	45000
UWL	Phase-Phase Spannung Warnung LOW	0	45000
UWH	Phase-Phase Spannung Warnung HIGH	0	45000
UHY	Phase-Phase Spannung Hysterese	0	100
VNAL	Phase-Neutral Spannung Alarm LOW	0	26000
VNAH	Phase-Neutral Spannung Alarm HIGH	0	26000
VNWL	Phase-Neutral Spannung Warnung LOW	0	26000
VNWH	Phase-Neutral Spannung Warnung HIGH	0	26000
VNHY	Phase-Neutral Spannung Hysterese	0	100
IAL	Strom Alarm LOW	0	$I_{max} = I_{nom} + 20 \% ^{1}$
IAH	Strom Alarm HIGH	0	$I_{max} = I_{nom} + 20 \% ^{1}$
IWL	Strom Warnung LOW	0	$I_{max} = I_{nom} + 20 \%^{-1}$
IWH	Strom Warnung HIGH	0	$I_{max} = I_{nom} + 20 \% ^{1}$
IHY	Strom Hysterese	0	100
INAL	Strom Neutralleiter Alarm LOW	0	$I_{max} = I_{nom} + 20 \%^{-1}$
INAH	Strom Neutralleiter Alarm HIGH	0	$I_{max} = I_{nom} + 20 \% ^{1}$
INWL	Strom Neutralleiter Warnung LOW	0	$I_{max} = I_{nom} + 20 \% ^{1}$
INWH	Strom Neutralleiter Warnung HIGH	0	$I_{max} = I_{nom} + 20 \%^{-1}$

Tab. 6: Parameter "Alarm-Konfiguration"

Name	Beschreibung	Min	Мах
INHY	Strom Neutralleiter Hysterese	0	100
PAL	Leistung Alarm LOW	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
PAH	Leistung Alarm HIGH	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
PWL	Leistung Warnung LOW	-3 · U _{max} · I _{max}	3 · U _{max} · I _{max}
PWH	Leistung Warnung HIGH	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
PHY	Leistung Hysterese	0	100
QAL	Blindleistung Alarm LOW	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
QAH	Blindleistung Alarm HIGH	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
QWL	Blindleistung Warnung LOW	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
QWH	Blindleistung Warnung HIGH	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
QHY	Blindleistung Hysterese	0	100
SAL	Scheinleistung Alarm LOW	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
SAH	Scheinleistung Alarm HIGH	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
SWL	Scheinleistung Warnung LOW	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
SWH	Scheinleistung Warnung HIGH	-3 · U _{max} · I _{max}	$3 \cdot U_{max} \cdot I_{max}$
SHY	Scheinleistung Hysterese	0	100

Tab. 6: Parameter "Alarm-Konfiguration"

4.4.5 Logging.cnf

In der Datei Logging.cnf werden die Logging-Parameter und das Logging-Intervall definiert.

Das Logging-Interval wird mit "INTERVAL;15" auf 15 Minuten eingestellt. Der Wert kann zwischen 1 und 60 angepasst werden und entspricht dann der entsprechenden Minutenzahl.

Die standardmäßig aktivierten Logging-Parameter sind in der unten stehenden Tabelle mit einem "x" in der letzten Spalte markiert.

Beispiel:

Um den Strom der Phase L1 zu loggen, muss eine Zeile "I1;Y" in der Datei geschrieben werden. Eine Zeile "I1;N" deaktiviert das Logging für diesen Wert.

/// logging interval: 1...60 min
INTERVAL;15
// Value, active Y/N
U12;Y
U23;Y

U31;Y

Name	Beschreibung	
U12	Effektivspannung Phase-Phase U12	×
U23	Effektivspannung Phase-Phase U23	х
U31	Effektivspannung Phase-Phase U31	х
V1N	Effektivspannung Phase-Neutral V1N	

Tab. 7: Parameter Logging-Konfiguration

DE

DE

Name	Beschreibung	
V2N	Effektivspannung Phase-Neutral V2N	
V3N	Effektivspannung Phase-Neutral V3N	
UMAX	Maximale Spannung U12, U23, U31	
UMIN	Minimale Spannung U12, U23, U31	
UAVG	Durchschnitt Spannung U12, U23, U31	
VMAX	Maximale Spannung V1N, V2N, V3N	
VMIN	Minimale Spannung V1N, V2N, V3N	
VAVG	Durchschnitt Spannung V1N, V2N, V3N	
11	Strom I1	x
12	Strom I2	x
13	Strom I3	х
IN	Strom IN	х
IMAX	Maximum von I1, I2, I3	
IMIN	Minimum von I1, I2, I3	
IAVG	Durchschnitt von I1, I2, I3	
P1	Wirkleistung Phase 1P1	
P2	Wirkleistung Phase 2 P2	
P3	Wirkleistung Phase 3 P3	
PMAX	Maximum von P1, P2, P3	
PMIN	Minimum von P1, P2, P3	
PT	Gesamte Wirkleistung	х
Q1	Blindleistung Phase 1 Q1	
Q2	Blindleistung Phase 2 Q2	
Q3	Blindleistung Phase 3 Q3	
QMAX	Maximum von Q1, Q2, Q3	
QMIN	Minimum von Q1, Q2, Q3	
QT	Gesamt Blindleistung	х
S1	Scheinleistung Phase 1 S1	
S2	Scheinleistung Phase 2 S2	
S3	Scheinleistung Phase 3 S3	
SMAX	Maximum von S1, S2, S3	
SMIN	Minimum von S1, S2, S3	
ST	Gesamte Scheinleistung	х
PF1	Leistungsfaktor Phase 1 PF1	х
PF2	Leistungsfaktor Phase 2 PF2	х

Tab. 7: Parameter Logging-Konfiguration

Name	Beschreibung	
PF3	Leistungsfaktor Phase 3 PF3	x
PFT	Gesamter Leistungsfaktor	
FREQ	Netzfrequenz F	x
THDFU12	THDf von U12	
THDFU23	THDf von U23	
THDFU31	THDf von U31	
THDFI1	THDf vonl1	
THDFI2	THDf von I2	
THDFI3	THDf von I3	
EA	Summe Wirkenergie	
EARUN	Laufzeit Wirkenergie	
EAC	Summe Wirkenergie anpassbar	
EACRUN	Laufzeit Wirkenergie anpassbar	
ER	Summe Blindenergie	
EAIN	Direkte Wirkenergie	
EAOUT	Reverse Wirkenergie	
ES	Scheinenergie	

Tab. 7: Parameter Logging-Konfiguration

4.4.6 System.cnf

In der Datei System.cnf erfolgt die grundlegende Systemkonfiguration des NH-Messmoduls mit folgenden Befehlen:

Befehl	Gültige Werte	Beschreibung
MODADR;	1-247	ModBus RTU adresse
MODBAU;	9600 19200 38400 8E1	ModBus Baud Rate
TOPOL;	1	1 = 3 Leiter Betrieb (L1+L2+L3), Anschluss unten – Brücke stecken!
	2	2 = 4 Leiter Betrieb (L1+L2+L3+N), Anschluss unten – N anschließen!
	3	3 = 3 Leiter Betrieb (L1+L2+L3), Anschluss oben (nur Größe NH00) – Brücke stecken!
	4	4 = 4 Leiter Betrieb (L1+L2+L3+N), Anschluss oben (nur Größe NH00) – N anschließen!
LEDCFG;	0 1	0 = LEDs an 1 = LEDs aus

Tab. 8: Parameter System-Konfiguration

//

// System configuration

DE

```
//
// Serial Number (max. 10 character)
SERIAL;1501700000
// Modbus address: 1...247
MODADR;247
// Modbus baud rate: 9600 / 19200 /
// 38400, 8E1
MODBAU;19200
// Topology:
// 1/2: 3-/4-wire bottom mounting
// 3/4: 3-/4-wire top mounting
TOPOL;2
// LED configuration: 0 = CAN LEDs on /
// 1 = CAN LEDs off
LEDCFG;0
```

4.5 Zugriff via USB

4.5.1 Anschluss

Hinweis:

Stellen Sie sicher, dass das andere Ende des in der Klappe befindlichen USB-Adapters am NH-Messmodul angeschlossen ist.

Hinweis:

Bei aktiver USB-Verbindung ist kein Logging möglich.

Das NH-Messmodul nutzt den USB-Standard "USB-OTG". Dies ermöglicht den Betrieb im USB-Slave- und USB-Master-Modus. Der USB-Anschluss ist zur leichten Erreichbarkeit in der Frontklappe des NH-Messmoduls angebracht.

■ Öffnen Sie die Klappe, um einen USB-Stick mit USB-OTG Adapter einzustecken oder eine Verbindung via Micro-USB Kabel zu einem PC herzustellen.

Abb. 4: Frontklappe des NH-Messmoduls

4.5.2 Zugriff via Computer

Um das NH-Messmodul an einen Computer anzuschließen benötigen Sie ein handelsübliches Micro-USB-Kabel.

■ Verbinden Sie das USB-Kabel mit dem NH-Messmodul und Ihrem Computer. Es werden nach kurzer Zeit zwei Wechseldatenträger angezeigt (vgl. Abschnitt 4.4.2 "Dateistruktur"), die LEDs des NH-Messmoduls leuchten Grün und

Orange (vgl. Abschnitt 4.3.3 "Anzeige der LEDs").

- Der Wechseldatenträger SYSTEM dient zur Konfiguration des NH-Messmoduls.
- Der Wechseldatenträger **DATA** beinhaltet gespeicherte (geloggte) Werte und Alarme des NH-Messmoduls.

4.5.3 Zugriff via USB-Stick

Hinweis:

Der USB-Zugriff via Computer setzt eines der folgenden Betriebssysteme voraus: Windows 7 oder höher bzw. Mac OS X 10.6 oder höher.

Um einen USB-Stick an dem NH-Messmodul anzuschließen benötigen Sie einen handelsüblichen USB-OTG Adapter. Es handelt sich hierbei um den gleichen Adapter wie bei Smartphones zum Anschluss von USB-Sticks. Der Adapter besteht aus einem Micro-USB-Stecker und einer USB-A-Buchse.

Hinweis:

Bitte beachten Sie, dass der verwendete USB-Stick FAT16-, FAT32- oder exFAT-formatiert ist und die maximale Leistungsaufnahme 100 mA betragen darf. Externe Festplatten werden nicht unterstützt.

Beim Anschluss eines USB-Sticks geht das NH-Messmodul wie folgt vor:

Abb. 5: Anschluss USB-Stick an NH-Messmodul

4.6 Firmware Update

4.6.1 Allgemeines

Hinweis:

Wenn Sie das NH-Messmodul mit einer CMC III PU betreiben, erfolgt das Firmware-Update automatisch über die CMC III PU.

Ein Firmware Update kann über die USB-Schnittstelle (vgl. Abschnitt 4.5 "Zugriff via USB") durchgeführt werden. Hierzu benötigen Sie eine Firmware-Datei (.img). Diese können Sie auf der Webseite der Firma Rittal herunterladen. Das eigentliche Update erfolgt dann via Computer (vgl. Abschnitt 4.6.2 "Firmware Update via Personal Computer") oder via USB-Stick (vgl. Abschnitt 4.6.3 "Firmware Update via USB-Stick").

4.6.2 Firmware Update via Personal Computer

Kopieren Sie die Firmware Datei (.img) in den Ordner UPDATE auf dem Wechseldatenträger SYSTEM, um ein Firmware Update via Computer durchzuführen (vgl. Abschnitt 4.5.2 "Zugriff via Computer").

Während des Kopiervorgangs blinkt die LED 1 orange, die LED 2 leuchtet rot.

- Warten Sie bis der Kopiervorgang vollständig beendet ist und die LED 1 orange und die LED 2 gr
 ün leuchtet.
- Trennen Sie anschließend die USB-Verbindung und warten Sie, bis das NH-Messmodul neu gestartet ist.

Nach erfolgreichem Update zeigen die LEDs wieder den Bus-Status oder Warnungen/Alarme an.

4.6.3 Firmware Update via USB-Stick

- Kopieren Sie die Firmware Datei (.img) in das Root-Verzeichnis des USB-Sticks (Hauptebene, nicht in einen Ordner), um ein Firmware Update via USB-Stick durchzuführen.
- Stecken Sie den USB-Stick in das NH-Messmodul.

Während des Kopiervorgangs blinkt die LED 1 orange, die LED 2 leuchtet grün.

- Warten Sie bis der Kopiervorgang vollständig beendet ist und die LED 1 orange und die LED 2 gr
 ün leuchtet.
- Trennen Sie die Verbindung.

Nach erfolgreichem Update zeigen die LEDs wieder den Bus-Status oder Warnungen/Alarme an.

4.7 CMC III (CAN-Bus)

4.7.1 Anschluss an eine CMC III Processing Unit

Hinweis:

Stellen Sie sicher, dass die aktuelle Firmwareversion der CMC III PU installiert ist. Die aktuelle Version finden Sie auf der Rittal Webseite.

, Hinweis:

Bitte beachten Sie, dass an der CMC III PU (7030.000) maximal 10 NH-Messmodule (5 je CAN-Bus-Anschluss) angeschlossen werden dürfen, an der CMC III PU Compact (7030.010) maximal 4 NH-Messmodule.

- Verbinden Sie das NH-Messmodul über ein CAN-Bus-Verbindungskabel (RJ 45) mit der CMC III PU bzw. den benachbarten Elementen im CAN-Bus.
- Montieren Sie den beiliegenden Ferrit am Verbindungskabel zwischen CMC III PU und NH-Messmodul wie dargestellt.

Abb. 6: Montage des Ferrit am Verbindungskabel

Der Anschluss erfolgt als Daisy Chain, der Anschluss ist durchgeschleift. Das NH-Messmodul wird über den CAN-Bus-Anschluss mit der notwendigen Betriebsspannung versorgt.

Hinweis:

Verbindungskabel in verschiedenen Längen können über die Fa. Rittal bezogen werden.

Folgende CAN-Bus-Verbindungskabel aus dem CMC III Zubehörprogramm können verwendet werden:

- 7030.090 (Länge 0,5 m)
- 7030.091 (Länge 1 m)
- 7030.092 (Länge 1,5 m)
- 7030.093 (Länge 2 m)
- 7030.480 (Länge 3 m)
- 7030.490 (Länge 4 m)
- 7030.094 (Länge 5 m)
- 7030.095 (Länge 10 m)

Ggf. wird nach dem Anschluss ein Software-Update des NH-Messmoduls durchgeführt.

Während des gesamten Update-Vorgangs blinkt die Status-LED der CMC III PU weiß und es erscheint eine entsprechende Meldung auf der Webseite.

Hinweis:

Solange der Update-Vorgang läuft, können keine Einstellungen vorgenommen werden.

Drücken Sie die "C"-Taste an der CMC III PU (ein erster Signalton ertönt) und halten Sie sie für ca. 3 Sekunden gedrückt, bis ein zweiter Signalton ertönt. Bei nicht erfolgreicher Installation siehe Abschnitt 1.5 "Mitgeltende Unterlagen".

4.7.2 Bedienung über die Webseite der CMC III Processing Unit

Nach der Anmeldung an der CMC III PU wird die Web-Oberfläche zur Bedienung des Geräts angezeigt.

■ Wählen Sie zunächst im Navigationsbereich den Eintrag "CMCIII-SES" an. Auf der Registerkarte **Einstellungen** werden analog zur CMC III PU die Zugriffsrechte für das NH-Messmodul (Schaltfläche **Einstellungen zu Geräte-Zugriffsrechten**) sowie die Alarmbenachrichtigung individuell festgelegt (Schaltfläche **Einstellungen zu allen Alarmen**).

Auf der Registerkarte **Überwachen** werden alle Einstellungen für NH-Messmodul vorgenommen. Auf der Ebene "Reale Geräte" können Sie alle generellen Einstellungen durchführen, die das NH-Messmodul betreffen.

5 ModBus

Begriffe und Definitionen

Begriff	Beschreibung
NULL	Beendigung eines ASCII String mit "\0"
NH-Messmodul	Rittal NH-Messmodul

Tab. 9: Begriffe und Definitionen

Abkürzungen

Abkürzung	Beschreibung
ACS	Zugriffsrechte (lesen/schreiben)
DT	Datentyp
RES	Auflösung, Anzahl der enthaltenen Nachkommastellen. Ein Pa- rameter, d. h. 10 ⁻¹ , stellt 1 Nachkommastelle dar.
RTU	Fernes Endgerät (Remote Terminal Unit)

Tab. 10: Abkürzungen

Das NH-Messmodul kann als ModBus RTU Slave eingesetzt werden. Die beiden ModBus RTU Buchsen (RJ 45) sind durchgeschleift. Es werden Standard Mod-Bus RTU Befehle unterstützt. Die Pinbelegung der RJ 45-Stecker ist wie folgt:

Pin	Belegung
4	D1 (B)
5	D0 (A)
8	GND

Tab. 11: Pinbelegung

5.1 Bus-Parameter

Die ModBus-Schnittstelle des NH-Messmoduls unterstützt die in Tabelle 12 beschriebenen Einstellungen.

Parameter	Einstellungen
Gerätetyp	Slave (feststehend)
Slave-Adresse	1247
Übersetzung Betriebsmodus	RTU (feststehend)
Baud-Rate	9600 19200 (Voreinstellung) 38400
Parität	Gerade (feststehend)
Datenbits	8 (feststehend)
Stoppbits	1 (feststehend)

Tab. 12: ModBus-Schnittstellenparameter

Die Baudrate kann über die Geräteeinstellungen (vgl. Abschnitt 5.3 "Unterstützte ModBus-Befehle") gesetzt werden. Die Standardadresse des NH-Messmoduls ist 247 (0xF7).

Das Modul kann jederzeit über einen Broadcast angesprochen werden (Adresse 0x00).

Hinweis:

Die Konfiguration der Slave-Adresse und der Baudrate ist via "System.cnf" per USB jederzeit möglich (vgl. Abschnitt 4.4.6 "System.cnf").

5.2 Datentypen (DT)

5.2.1 Unterstützte Datentypen

DT	Wörter	Beschreibung
u16	1	ohne Vorzeichen, kurz (16-bit ohne Vorzeichen, integer)
s32	2	mit Vorzeichen, lang (32-bit mit Vorzeichen, integer)
ASCII	n/2	n-Byte ASCII String, n immer gerade

Tab. 13: Unterstützte Datentypen

Wenn die Anzahl der Zeichen des ASCII Strings der maximalen Anzahl der Bytes "n" entspricht, muss der String nicht beendet werden. Wenn die Anzahl der Zeichen kleiner als "n" ist, werden die übrigen Bytes mit NULL ("\0") aufgefüllt.

5.2.2 Byte-Reihenfolge

Die ModBus-Übertragung nutzt eine Big-Endian Speicherorganisation. Das heißt: das höchstwertige Byte wird an der kleinsten Speicheradresse gespeichert. Die höchstrangige Komponente wird zuerst genannt (Beispiel: Stunde:Minute:Sekunde).

Tabelle 14 zeigt die Byte-Darstellung der unterstützten Datentypen.

DT	Wert	Hex-Wert	+0	+1	+2	+3
s32	305419896	0x12345678	12	34	56	78
u16	4660	0x1234	12	34	-	-

Tab. 14: Byte-Reihenfolge der numerischen Datentypen

5.3 Unterstützte ModBus-Befehle

Die unterstützten ModBus-Befehle sind in Tabelle 15 zusammengefasst.

Befehl	Beschreibung
0x03	Holding Register auslesen (vgl. Abschnitte 5.4 und 5.5)
0x06	Einzelregister schreiben (vgl. Abschnitt 5.4)
0x10	Mehrfachregister schreiben (vgl. Abschnitt 5.4)
0x2B	Gerätekennung auslesen (vgl. Abschnitt 5.7)
0x41	Zeitsynchronisation (vgl. Abschnitt 5.3.3)
0x43	User Blocks (vgl. Abschnitt 5.8)
0x44	Slave-Adresse einstellen (vgl. Abschnitt 5.3.1

Tab. 15: ModBus-Befehle

5.3.1 Slave-Adresse

Eine neue Slave-Adresse kann jederzeit über den ModBus-Master konfiguriert werden. Der Befehl zum Einstellen der Slave-Adresse des NH-Messmoduls wird via Broadcast übertragen und beinhaltet dabei die neue Slave-Adresse und die einmalige Seriennummer des Geräts. Die Slave-Adresse wird übernommen, wenn die vorgegebene Seriennummer zu der Seriennummer des Geräts passt. Der Befehl 0x44 dient zur benutzerdefinierter Adresseneinstellung. Dabei werden die Daten im Standard ModBus RTU Framing entsprechend der Vorgaben in Tabelle 16 gesendet.

Adresse	0 (Broadcast)
Befehl	68 (0x44)
Neue Adresse	1247
10-Byte-Seriennummer	Vgl. Abschnitte 3.5 und 5.7
ModBus CRC	16-bit CRC

Tab. 16: Befehl zur Vergabe der Slave Adresse

Die Seriennummer des Geräts ist auf dem Typenschild des NH-Messmoduls aufgedruckt (vgl. Abschnitt 3.5 "Seriennummer") und in den Gerätekenndaten enthalten (vgl. Abschnitt 5.7 "Gerätekennung").

Da Broadcast Meldungen durch die Slaves nicht beantwortet werden, muss der Master die erfolgreiche Umadressierung des Slaves durch Abrufen prüfen, d. h. die Slave-Kenndaten unter Verwendung der neuen Slave-Adresse abfragen.

5.3.2 Baud-Rate

Die Baudrate kann über die Geräteeinstellungen des NH-Messmoduls eingestellt werden (vgl. Abschnitt 5.4 "Geräteeinstellungen").

Nach einem erfolgreichen Schreibzugriff ("positive write response") wird die ModBus-Schnittstelle mit der neuen Baudrate neu gestartet.

Das Starten der ModBus-Schnittstelle mit der neuen Baudrate kann zu Kommunikationsfehlern führen.

Zur Wiederherstellung der Kommunikation müssen der ModBus-Master und die übrigen Slaves auch mit der neuen Baudrate konfiguriert werden.

5.3.3 Zeitsynchronisation

Die Einstellung der Gerätezeit kann ebenfalls durch Schreiben des Registers 0xD005 der Geräteeinstellungen erreicht werden.

Der nachfolgend beschriebene Befehl wird als Broadcast-Frame gesendet.

Adresse	Befehl	6-Byte Daten					
0x00 (übertragen)	0x41	0	1	2	3	4	5
		Magische Zahl (0x1664)		Datum/Uhrzeit in Sekunden seit 2000			

Tab. 17: Zeitsynchronisation

In jeden Frame wird vom Master systematisch eine konstante magische Zahl eingefügt.

Der Slave muss eine magische Zahl innerhalb der Anfrage validieren. Die gültige magische Zahl ist als 0x1664 definiert.

5.4 Geräteeinstellungen

Die Geräteeinstellungen werden mit dem ModBus-Befehl 0x10 (Mehrfachregister schreiben) oder 0x06 (Einzelregister schreiben) geändert.

Das Auslesen der Geräteeinstellungen wird durch ModBus-Befehl 0x03 (Holding Register auslesen) unterstützt.

Adresse	Wörter	Beschreibung	Min	Max	RES	Einheit	DT	ACS
0xD001	1	Status Bit Register: Zeit Status (Bit 0): 0 = nicht synchronisiert 1 = Datum/Zeit sind synchronisiert Slave Neustart Status (Bit 1): 0 = nicht (neu-)gestartet 1 = (neu-)gestartet Globaler Alarm Status (Bit 2): 0 = kein aktiver Alarm 1 = min. ein aktiver Alarm	0	0x0007	1		u16	R
0xD002	1	Baudrate Zähl.: 0: 9600 1: 19200 2: 38400	0	2	1		u16	R/W

Tab. 18: Geräteeinstellungen

DE

DE	Adresse	Wörter	Beschreibung	Min	Max	RES	Einheit	DT	ACS
	0xD003	1	Benutzerdefinierte Einstellungen: Bit 0: Min/Max-Werte zurücksetzen Bit 1: reserviert Bit 27 = 0: alle folgenden zurückset- zen Bit 2 = Strom Bit 3 = Spannung Bit 4 = Leistung Bit 5 = Leistungsfaktor Bit 6 = THD Bit 7 = Frequenz Bit 815: reserviert Lesezugriff gibt die letzte geschriebe- ne Bitfolge aus, Bit 0 ist immer 0.	1	2	1		u16	R/W
	0xD004	1	Messsystem-Topologie: 1 = 3-Leiter, unten montiert 2 = 4-Leiter, unten montiert (Standard) 3 = 3 Leiter, oben montiert 4 = 4 Leiter, oben montiert	1	2	1		u16	R/W
	0xD005	2	Datum und Uhrzeit der koordinierten Weltzeit einstellen: Sekunden, ab 1. Januar 2000, 00:00 Uhr	0	2147483647	1	S	s32	R/W
	0xD007	1	Datum und Uhrzeit der koordinierten Weltzeit: Zusatz in ms	0	999	1	ms	u16	R
	0xD008	1	Datum und Uhrzeit der koordinierten Weltzeit: 1: Zeit eingestellt 0: Zeit nicht eingestellt	0	1	1		u16	R
	0xD009	2	Zeitstempelmaschine, Sekunden ab dem ersten Anlauf der Maschine	0	2147483647	1	S	s32	R
	0xD00B	1	Zeitstempelmaschine: Zusatz in ms		999	1	ms	u16	R
	0xD00C	2	Betriebsstundenzähler: Sekunden ab dem letzten Anlauf	0	2147483647	1	S	s32	R
	0xD00E	1	Nummer des Anlaufs: Zuwachs bei je- dem Einschalten/Reset	0	65535	1		u16	R
	0xD00F	1	Konfigurierzähler: erhöht sich mit jeder Konfiguration	0	65535	1		u16	R
	0xD010	2	Phase-Phase Spannung: Alarmschwelle LOW	0	45000	10 ⁻²	V	s32	R/W
	0xD012	2	Phase-Phase Spannung: Alarmschwelle HIGH	0	45000	10 ⁻²	V	s32	R/W
	0xD014	2	Phase-Phase Spannung: Warnschwelle LOW	0	45000	10 ⁻²	V	s32	R/W
	0xD016	2	Phase-Phase Spannung: Warnschwelle HIGH	0	45000	10 ⁻²	V	s32	R/W
	0xD018	2	Phase-Phase Spannung: Hysterese	0	1000	10 ⁻¹	%	s32	R/W
	0xD01A	2	Phase-Neutral Spannung: Alarmschwelle LOW	0	26000	10 ⁻²	V	s32	R/W

Tab. 18: Geräteeinstellungen

DE

Adresse	Wörter	Beschreibung	Min	Мах	RES	Einheit	DT	ACS
0xD01C	2	Phase-Neutral Spannung: Alarmschwelle HIGH	0	26000	10-2	V	s32	R/W
0xD01E	2	Phase-Neutral Spannung: Warnschwelle LOW	0	26000	10 ⁻²	V	s32	R/W
0xD020	2	Phase-Neutral Spannung: Warnschwelle HIGH	0	26000	10 ⁻²	V	s32	R/W
0xD022	2	Phase-Neutral Spannung: Hysterese	0	1000	10 ⁻¹	%	s32	R/W
0xD024	2	Strom: Alarmschwelle LOW	0	1)	10 ⁻¹	А	s32	R/W
0xD026	2	Strom: Alarmschwelle HIGH	0	1)	10 ⁻¹	А	s32	R/W
0xD028	2	Strom: Warnschwelle LOW	0	1)	10 ⁻¹	А	s32	R/W
0xD02A	2	Strom: Warnschwelle HIGH	0	1)	10 ⁻¹	А	s32	R/W
0xD02C	2	Strom: Hysterese	0	1000	10 ⁻¹	%	s32	R/W
0xD02E	2	Strom Neutralleiter: Alarmschwelle LOW	0	1)	10 ⁻¹	A	s32	R/W
0xD030	2	Strom Neutralleiter: Alarmschwelle HIGH	0	1)	10 ⁻¹	А	s32	R/W
0xD032	2	Strom Neutralleiter: Warnschwelle LOW	0	1)	10 ⁻¹	А	s32	R/W
0xD034	2	Strom Neutralleiter: Warnschwelle HIGH	0	1)	10 ⁻¹	A	s32	R/W
0xD036	2	Strom Neutralleiter: Hysterese	0	1000	10 ⁻¹	%	s32	R/W
0xD038	2	Gesamte Wirkleistung: Alarmschwelle LOW	2)	2)	10 ⁻²	kW	s32	R/W
0xD03A	2	Gesamte Wirkleistung: Alarmschwelle HIGH	2)	2)	10 ⁻²	kW	s32	R/W
0xD03C	2	Gesamte Wirkleistung: Warnschwelle LOW	2)	2)	10 ⁻²	kW	s32	R/W
0xD03E	2	Gesamte Wirkleistung: Warnschwelle HIGH	2)	2)	10 ⁻²	kW	s32	R/W
0xD040	2	Gesamte Wirkleistung: Hysterese	0	1000	10 ⁻¹	%	s32	R/W
0xD042	2	Gesamte Blindleistung: Alarmschwelle LOW	0	2)	10 ⁻²	kW	s32	R/W
0xD044	2	Gesamte Blindleistung: Alarmschwelle HIGH	0	2)	10 ⁻²	kW	s32	R/W
0xD046	2	Gesamte Blindleistung: Warnschwelle LOW	0	2)	10 ⁻²	kW	s32	R/W
0xD048	2	Gesamte Blindleistung: Warnschwelle HIGH	0	2)	10 ⁻²	kW	s32	R/W
0xD04A	2	Gesamte Blindleistung: Hysterese	0	1000	10 ⁻¹	%	s32	R/W
0xD04C	2	Gesamte Scheinleistung: Alarmschwelle LOW	2)	2)	10 ⁻²	kW	s32	R/W

Tab. 18: Geräteeinstellungen

Adresse	Wörter	Beschreibung	Min	Max	RES	Einheit	DT	ACS
0xD04E	2	Gesamte Scheinleistung: Alarmschwelle HIGH	2)	2)	10 ⁻²	kW	s32	R/W
0xD050	2	Gesamte Scheinleistung: Warnschwelle LOW	2)	2)	10 ⁻²	kW	s32	R/W
0xD052	2	Gesamte Scheinleistung: Warnschwelle Hoch	2)	2)	10 ⁻²	kW	s32	R/W
0xD054	2	Gesamte Scheinleistung: Hysterese	0	1000	10 ⁻¹	%	s32	R/W
0xD056	20	Benutzerdefiniertes Feld 1	3)	3)			ASCII	R/W
0xD06A	20	Benutzerdefiniertes Feld 2	3)	3)			ASCII	R/W

Tab. 18: Geräteeinstellungen

1) $I_{MAX} = I_N + 20$ %, I_N : Nennstrom.

Der Nennstrombereich erstreckt sich von 150 A, 250 A, 400 A bis 600 A und steht dem ModBus über "Gerätekennung", Parameter "Nennleistung" zur Verfügung.

 $I_{MAX} = 600 \text{ A} + 20 \% = 720 \text{ A}$ Max = $I_{MAX} / \text{RES} = 7200$

 $\begin{array}{l} 2) \ P_{MAX} = Q_{MAX} = S_{MAX} = U_{MAX} \cdot I_{MAX}, \ U_{MAX} = 450 V \\ I_{MAX} = 720A => P_{MAX} = 324 \ kW \\ Min = -P_{MAX} / RES = -32400 \\ Max = P_{MAX} / RES = 32400 \\ => Qtot_{MAX} = 3^{*}Q_{MAX} = 972 \ kW \\ Min = - Qtot_{MAX} / RES = -97200 \\ Max = Qtot_{MAX} / RES = 97200 \end{array}$

3) Die benutzerdefinierten Felder 1 und 2 sind benutzerkonfigurierbare ASCII Strings, die maximal 40 Zeichen, einschließlich NULL-Beendigung, beinhalten. Standardmäßig sind die benutzerdefinierten Felder 1/2 mit dem String "Custom field 1/2" beschrieben.

Beim Schreiben auf eines der benutzerdefinierten Felder müssen immer 40 Bytes geschrieben werden. Ungenutzte Bytes müssen auf 0 gesetzt werden.

DE

5.5 Datenregister

Die in Tabelle 19 beschriebenen Datenregister werden durch den Befehl 0x03 (Holding Register auslesen) ausgelesen.

Alle in Tabelle 19 beschriebenen Register sind nur Leseregister.

ADDR	Wörter	Beschreibung	Min	Max	RES	Einheit	DT
0x0002	2	RMS Phase-Phase Spannung U12	0	45000	10 ⁻²	V	s32
0x0004	2	RMS Phase-Phase Spannung U23	0	45000	10 ⁻²	V	s32
0x0006	2	RMS Phase-Phase Spannung U31	0	45000	10 ⁻²	V	s32
0x0008	2	RMS Phase-Neutral Spannung V1N	0	26000	10 ⁻²	V	s32
0x000A	2	RMS Phase-Neutral Spannung V2N	0	26000	10 ⁻²	V	s32
0x000C	2	RMS Phase-Neutral Spannung V3N	0	26000	10 ⁻²	V	s32
0x000E	2	RMS Strom an Phase 1: I1	0	1)	10 ⁻¹	А	s32
0x0010	2	RMS Strom an Phase 2: I2	0	1)	10 ⁻¹	А	s32
0x0012	2	RMS Strom an Phase 3: I3	0	1)	10 ⁻¹	А	s32
0x0014	2	RMS Strom an Neutralleiter: IN	0	1)	10 ⁻¹	А	s32
0x0016	2	Wirkleistung an Phase 1 P1	0	2)	10 ⁻²	kW	s32
0x0018	2	Wirkleistung an Phase 2 P2	0	2)	10 ⁻²	kW	s32
0x001A	2	Wirkleistung an Phase 3 P3	0	2)	10 ⁻²	kW	s32
0x001C	2	Gesamte Wirkleistung Ptot	0	3)	10 ⁻²	kW	s32
0x001E	2	Blindleistung an Phase 1 Q1	2)	2)	10 ⁻²	kvar	s32
0x0020	2	Blindleistung an Phase 2 Q2	2)	2)	10 ⁻²	kvar	s32
0x0022	2	Blindleistung an Phase 3 Q3	2)	2)	10 ⁻²	kvar	s32
0x0024	2	Gesamte Blindleistung Qtot	3)	3)	10 ⁻²	kvar	s32
0x0026	2	Scheinleistung an Phase 1 S1	0	2)	10 ⁻²	kVA	s32
0x0028	2	Scheinleistung an Phase 2 S2	0	2)	10 ⁻²	kVA	s32
0x002A	2	Scheinleistung an Phase 3 S3	0	2)	10 ⁻²	kVA	s32
0x002C	2	Gesamte Scheinleistung Stot	0	3)	10 ⁻²	kVA	s32
0x002E	2	Maximale Spannung U12, U23, U31	0	45000	10 ⁻²	V	s32
0x0030	2	Maximale Spannung V1N, V2N, V3N	0	26000	10 ⁻²	V	s32
0x0032	2	Maximaler Strom I1, I2, I3	0	1)	10 ⁻¹	А	s32
0x0034	2	Maximale Wirkleistung P1, P2, P3	0	2)	10 ⁻²	kW	s32
0x0036	2	Maximale Blindleistung Q1, Q2, Q3	2)	2)	10 ⁻²	kvar	s32
0x0038	2	Maximale Scheinleistung S1, S2, S3	0	2)	10 ⁻²	kVA	s32
0x003A	2	Minimale Spannung U12, U23, U31	0	45000	10 ⁻²	V	s32
0x003C	2	Minimale Spannung V1N, V2N, V3N	0	26000	10 ⁻²	V	s32
0x003E	2	Minimaler Strom I1, I2, I3	0	1)	10 ⁻¹	А	s32
0x0040	2	Minimale Wirkleistung P1, P2, P3	0	2)	10 ⁻²	kW	s32

Tab. 19: Datenregister

 . ·	π.	

ADDR	Wörter	Beschreibung	Min	Max	RES	Einheit	DT
0x0042	2	Minimale Blindleistung Q1, Q2, Q3	2)	2)	10 ⁻²	kvar	s32
0x0044	2	Minimale Scheinleistung S1, S2, S3	0	2)	10 ⁻²	kVA	s32
0x0046	2	Arithmetisches Mittel aus U12, U23 und U31	0	45000	10 ⁻²	V	s32
0x0048	2	Arithmetisches Mittel aus V1N, V2N und V3N	0	26000	10 ⁻²	V	s32
0x004A	2	Arithmetisches Mittel aus I1, I2 und I3	0	1)	10 ⁻¹	А	s32
0x004C		Reserviert					
 0x004F							
0x0050	2	Leistungsfaktor an Phase 1 PF1 ($\cos \phi$)	-100	100	10 ⁻²		s32
0x0052	2	Leistungsfaktor an Phase 2 PF2 (cos φ)	-100	100	10 ⁻²		s32
0x0054	2	Leistungsfaktor an Phase 3 PF3 (cos φ)	-100	100	10 ⁻²		s32
0x0056	2	Gesamtleistungsfaktor PFTOT	-100	100	10 ⁻²		s32
0x0058	2	Netzfrequenz F	0	650	10 ⁻¹	Hz	s32
0x005A	2	THDf von U12	0	1000	10 ⁻¹	%	s32
0x005C	2	THDf von U23	0	1000	10 ⁻¹	%	s32
0x005E	2	THDf von U31	0	1000	10 ⁻¹	%	s32
0x0060	2	THDf von V1N	0	1000	10 ⁻¹	%	s32
0x0062	2	THDf von V2N	0	1000	10 ⁻¹	%	s32
0x0064	2	THDf von V3N	0	1000	10 ⁻¹	%	s32
0x0066	2	THDf von I1	0	1000	10 ⁻¹	%	s32
0x0068	2	THDf von I2	0	1000	10 ⁻¹	%	s32
0x006A	2	THDf von I3	0	1000	10 ⁻¹	%	s32
0x006C	2	Summe Wirkenergie Ea	0	2147483647	10 ⁻¹	kWh	s32
0x006E	2	Summe Blindenergie Er	0	2147483647	10 ⁻¹	kvarh	s32
0x0070	2	Summe Scheinenergie Es	0	2147483647	10 ⁻¹	kVAh	s32
0x0072	2	Direkte Wirkenergie EalN	0	2147483647	10 ⁻¹	kWh	s32
0x0074	2	Reverse Wirkenergie EaOUT	0	2147483647	10 ⁻¹	kWh	s32
0x0076	2	Summe Wirkenergie Ea benutzerdefiniert	0	2147483647	10 ⁻¹	kWh	s32
0x0078	2	Summe Wirkenergie Laufzeit	0	2147483647	1	S	s32
0x007A	2	Summe Wirkenergie benutzerdefinierte Lauf- zeit	0	2147483647	1	S	s32
0x007C	2	Temperatur	0	2147483647	10 ⁻¹	°C	s32
0x007E	1	Error Register 4)	0	0xFF	1		u16
0x007F		Reserviert					
0x0080	1	RMS Phase-Phase Spannungszustand	5)	5)	1		u16
0x0081	1	RMS Phase-Neutral Spannungszustand	5)	5)	1		u16

Tab. 19: Datenregister

DE

ADDR	Wörter	Beschreibung	Min	Max	RES	Einheit	DT
0x0082	1	RMS Strom an Phase-Zustand	5)	5)	1		u16
0x0083	1	RMS Strom an Neutralleiter-Zustand	5)	5)	1		u16
0x0084	1	Wirkleistungszustand	5)	5)	1		u16
0x0085	1	Blindleistungszustand	5)	5)	1		u16
0x0086	1	Scheinleistungszustand	5)	5)	1		u16
0x0087	1	Temperaturstatus	6)	6)	1		u16
0x0088 0x008F		Reserviert					

Tab. 19: Datenregister

1) $I_{MAX} = I_N + 20\%$, I_N : Nennstrom.

Der Nennstrombereich erstreckt sich von 150 A, 250 A, 400 A bis 600 A und steht dem ModBus über "Gerätekennung", Parameter "Nennleistung" zur Verfügung.

 $I_{MAX} = 600A + 20\% = 720A$ Max = $I_{MAX} / RES = 7200$

2) $P_{MAX} = Q_{MAX} = S_{MAX} = U_{MAX} \cdot I_{MAX}, U_{MAX} = 450V$ $I_{MAX} = 720A \Rightarrow P_{MAX} = 324 \text{ kW}$ $Min = -P_{MAX} / \text{ RES} = -32400$ $Max = P_{MAX} / \text{ RES} = 32400$

3) $Qtot_{MAX} = 3^{*}Q_{MAX} = 972 \text{ kW}$ Min = - $Qtot_{MAX} / \text{RES} = -97200$ Max = $Qtot_{MAX} / \text{RES} = 97200$

4) Das Error Register ist ein Feld mit 8 Bits und orientiert sich am Fehlerregister der CMC III. Jedes Bit steht für einen speziellen Fehlertyp, es werden folgende Fehler unterstützt:

- Bit 0: Allgemeiner Fehler (System Fehler)

– Bit 3: Temperatur (Gerätetemperatur zu hoch)

5) Der allgemeine Zustand eines Parameters kann folgende Werte beinhalten:

1: Nicht verfügbar, d.h. Strom-Neutralleiter in einem 3-Phasen-Netz

4: Werte in Ordnung

6: Warnung, Wert zu hoch

7: Alarm, Wert zu niedrig

- 8: Alarm, Wert zu hoch
- 9: Warnung, Wert zu niedrig

6) Der Temperatur Status nutzt die gleichen Werte wie in 5) unterstützt aber nur:

4: Wert in Ordnung

8: Alarm, Wert zu hoch

Rittal NH-Messmodul

5.6 Alarm-Konfiguration

Die Erzeugung von Alarmen und Warnungen steht für die in Tabelle 20 beschriebenen Prozesswerte zur Verfügung.

Spannungs- und Stromalarme werden vom minimalen und maximalen Wert erzeugt, die Alarme für leistungsbezogene Werte werden vom Gesamtwert der drei Phasen erzeugt.

Wert	Unterer Bezugswert	Oberer Bezugswert
Phase-Phase Spannung (U12, U23, U31)	Min(U12, U23, U31)	Max(U12, U23, U31)
Phase-Neutral Spannung (V1N, V2N, V3N)	Min(V1N, V2N,V3N)	Max(V1N, V2N,V3N)
Strom an Phase (I1, I2, I3)	Min(I1, I2, I3)	Max(I1, I2, I3)
Strom an Neutralleiter (IN)	IN	IN
Wirkleistung (P1, P2, P3)	Ptot = P1+P2+P3	Ptot = P1+P2+P3
Blindleistung (Q1, Q2, Q3)	Qtot = Q1+Q2+Q3	Qtot = Q1+Q2+Q3
Scheinleistung (S1, S2, S3)	Stot = S1+S2+S3	Stot = S1+S2+S3

Tab. 20: Alarm-/Warnwerte und Bezugswerte

Wenn ein Alarm oder eine Warnung ansteht, wird der allgemeine Status der Werte (Datenregister 0x0080... 0x0086) auf den entsprechenden Status gesetzt:

6: Warnung, Wert zu hoch

7: Alarm, Wert zu niedrig

8: Alarm, Wert zu hoch

9: Warnung, Wert zu niedrig

5.6.1 Konfigurationswerte

Die Konfiguration befindet sich in den Geräteeinstellungen (Register 0xD010...0xD054) und stellt für jeden Wert 5 Register zur Verfügung: Warnschwelle LOW/HIGH, Alarmschwelle LOW/HIGH und Hysterese.

Unterer Grenzwert:

Ein Alarm oder eine Warnung steht an (Status = 7/9), wenn der Wert unter den unteren Schwellenwert fällt, und wird auf Leerlauf gesetzt (Status 4 = in Ordnung), wenn der Wert höher als der untere Schwellenwert + Hysterese ist.

Oberer Grenzwert:

Ein Alarm oder eine Warnung steht an (Status = 6/8), wenn der Wert den oberen Schwellenwert übersteigt, und wird auf Leerlauf gesetzt (Status 4 = in Ordnung), wenn der Wert unter den oberen Schwellenwert - Hysterese fällt.

Der Hysteresewert in % entspricht immer dem konfigurierten maximalen Wert der Alarm- bzw. Warnschwelle.

5.6.2 Beispiel

- Phase-Neutral Spannung, Min = 195 V
- Warnschwelle LOW: 200 V
- Hysterese 10 %

Die untere Warnung steht an: Wert < 200 V (Status = 9).

Bedingung zum Zurücksetzen der Warnung auf Leerlauf (Status = 4): Wert > 220 V

Zur Deaktivierung eines Alarms/einer Warnung müssen die entsprechenden Werte lediglich auf die konfigurierbaren maximalen und minimalen Werte gesetzt werden (siehe Grenzwerte und zusätzliche Hinweise in Tabelle 19).

Es steht für die Alarme/Warnungen keine gesonderte Konfiguration zur Aktivierung/Deaktivierung zur Verfügung.

Zur Nutzung der Alarm- und Warnungsfunktionalität ohne Hysterese werden die entsprechenden Werte auf 0 % konfiguriert.

5.7 Gerätekennung

Das NH-Messmodul unterstützt die in Tabelle 21 beschriebene erweiterte Gerätekennung gemäß dem ModBus-Anwendungsprotokoll.

Die spezifischen Objekte werden mit der tatsächlichen Länge des ASCII Strings übertragen.

Die unterstützten Zugriffstypen sind wie folgt:

– 01: grundlegende Gerätekennung (Bitstrom-Zugang)

– 02: reguläre Gerätekennung (Bitstrom-Zugang)

– 03: erweiterte Gerätekennung (Bitstrom-Zugang)

Die in Tabelle 21 definierten Objektwerte sind lediglich Beispiele, die Inhalte der Objektwerte werden am Produktionsstandort gespeichert.

Objekt ID	Objektname	Тур	Objektwert
0x02	Versionsnummer (Produkt)	ASCII	1.0.0
0x03	Verkäufer URL	ASCII	www.rittal.com
0x04	Produktname (Markenname)	ASCII	Rittal
0x05	Modellbezeichnung (Name der Reihe)	ASCII	NH-Messmodul
0x80	Produktcode (Seriennummer)	ASCII	10 stellig (vgl. Abschnitt 3.5)
0x82	Produtktionsdatum (Woche und Jahr)	ASCII	WWJJ
0x83	Softwareversion	ASCII	V01.00
0x84	Hardwareversion	ASCII	V01.00
0x86	Nennleistung	ASCII	150/250/400/600

Tab. 21: Gerätekennung

5.8 User Blocks

Die Funktion der User Blocks (0x43) erlaubt es eine nicht zusammenhängende Gruppe von Geräteeinstellungen und/oder Datenregistern in einem Befehl abzufragen. Dabei werden die Unterbefehle 0x01 (Einrichtung), 0x02 (Lesen) und 0x03 (Schreiben) unterstützt.

Es werden bis zu 8 User Blocks unterstützt. Diese müssen in einer speziellen Einrichtung initialisiert werden. Wird der Block nicht initialisiert, führt ein Lese- oder Schreibzugriff zu einem Fehler.

Wenn das NH-Messmodul oder das ModBus-Interface neu gestartet werden – dies ist auch der Fall, wenn die ModBus-Einstellungen geändert werden – müssen die benutzerdefinierten Blöcke neu initialisiert werden.

Hinweis:

Das Ändern der Baudrate oder das Ändern der Slave-Adresse führt zu einem Neustart des ModBus-Interfaces.

Ein User-Block-Befehl beginnt mit einem Befehlsanfrage-Kopf, der in der folgenden Tabelle dargestellt ist:

Byte	Daten	Beschreibung
0	0x43	Befehl "User Block"
1	0x16	Magische Zahl (MSB)
2	0x64	Magische Zahl (LSB)

Tab. 22: Befehlsanfrage-Kopf

Byte	Daten	Beschreibung
3	0x010x03	Unterbefehl: 0x01 = Einrichtung 0x02 = Lesen 0x03 = Schreiben
4	0x010x08	ID des "User Blocks" (1…8)
5	0x010x78	Anzahl an Variablen (1120)

Tab. 22: Befehlsanfrage-Kopf

Eine erfolgreiche Antwort startet mit einem Antwort-Kopf, welcher in der nachfolgenden Tabelle dargestellt ist:

Byte	Daten	Beschreibung
0	0x43	Befehl "User Block"
1	0x010x03	Unterbefehl: 0x01 = Einrichtung 0x02 = Lesen 0x03 = Schreiben
2	0x010x08	ID des "User Blocks" (1…8)
3	0x010x78	Anzahl an Variablen (1120)

Tab. 23: Antwort-Kopf

Wenn ein Fehler auftritt, antwortet der Slave mit einem der ModBus-Fehler-Codes nach folgendem Schema: Byte 0: 0x43 + 0x80 und einem der in der folgenden Tabelle dargestellten Codes in Byte 1:

ModBusFehler		Beschreibung
0x02	Adress-Wert stimmt nicht	Die Adresse des benutzerdefinierten Blocks stimmt nicht, unzulässige Einrichtung des User Blocks.
0x03	Daten stimmen nicht	 Falsches Datenformat oder Werte außerhalb des gültigen Bereichs: magische Zahl stimmt nicht nicht unterstützter Unterbefehl nicht unterstützte ID des User Blocks unzulässige Anzahl an Variablen die Antwort überschreitet die maximale Größe des Modbus-Telegrams kein Schreibezugriff zu schreibender Wert außerhalb des gülti- gen Bereichs User Block nicht initialisiert
0x04	Server Gerätefeh- ler	nicht zu behebender Fehler

Tab. 24: Fehler-Codes

5.8.1 Beispiel

Einrichtung

Das Beispiel zeigt die Einrichtung eines User Blocks mit der ID 1 und 4 Variablen (3 Daten-Register und 1 Geräte-Einstellungs-Register).

Befehl	sanfrage	-Kopf				0	1	2	3	4	5	6	7	D
0x43	0x16	0x64	0x01	0x01	0x04	0xD004	Ļ	0x0002		0x0100)	0x0200		

Die Antwort beinhaltet nur den Kopf.

Antwort-Kopf

-			
0x43	0x01	0x01	0x04

Lesen

Die Anzahl der zu lesenden Werte darf nicht die Anzahl der definierten Variablen im User-Block überschreiten. Eine Lese-Anfrage mit einer geringeren Anzahl Variablen ist jederzeit möglich.

Befehlsanfrage-Kopf						
0x43	0x16	0x64	0x02	0x01	0x04	

Die Antwort beinhaltet die zuvor eingerichteten Werte:

Antwor	t-Kopf			0	1	2	3	4	5	6	7	8	9	10	11	12	13
0x43	0x02	0x01	0x04	0x00)02	0x00	08c1c	k		0x00)008cf	1		0x00	00001	12	

Schreiben

Der User Block in diesem Beispiel besitzt nur ein Register mit Schreibzugriff. Dies bedeutet, dass ein Schreibe-Zugriff mit maximal einer Variablen erfolgen darf.

Befehlsa	Befehlsanfrage-Kopf						
0x43	0x16	0x64	0x03	0x01	0x01	0xD004	

Die Antwort beinhaltet nur den Kopf.

Antwort-Kopf			
0x43	0x03	0x01	0x01

6 Installation und Bedienung Zubehör

Das "LCD Display für Monitoring" und das "Netzteil für Display und ModBus" sind entsprechend der dem jeweiligen Produkt beiliegenden Montageanleitung, unter Beachtung der Sicherheitshinweise (vgl. Abschnitt 2 "Sicherheitshinweise"), zu montieren.

Hinweis:

Das Display ist immer der ModBus-Master. Wenn es installiert ist, sind keine anderen ModBus-Master möglich.

6.1 Installation Netzteil für Display und ModBus

Stellen Sie eine Verbindung zwischen dem NH-Messmodul und dem "Netzteil für Display und Modbus" wie folgt her:

- Verbinden Sie ein Ende eines RJ 45-Kabels mit einem beliebigen ModBus-Anschluss des NH-Messmoduls.
- Verbinden Sie das andere Ende des RJ 45-Kabels mit dem Anschluss Mod-Bus-IN am "Netzteil für Display und Modbus".
- Weitere NH-Messmodule verbinden Sie in Reihe mit dem 1. NH-Messmodul.

Hinweis:

Verbindungskabel in verschiedenen Längen können über die Fa. Rittal bezogen werden.

Um das NH-Messmodul unabhängig von CMC III PU und Stromschienensystem mit Spannung zu versorgen, nutzen Sie bitte den dem Netzteil beiliegenden Adapter.

Hinweis:

Diese Schritte müssen Sie nicht durchführen, wenn Sie eine CMC III PU nutzen oder wenn Ihnen eine Spannungsversorgung via Stromschienensystem ausreicht.

- Verbinden Sie den Adapter mit dem Anschluss "ModBus-OUT" am "Netzteil für Display und Modbus".
- Verbinden Sie ein Ende eines RJ 45-Kabels mit der Buchse des Adapters.
- Verbinden Sie das andere Ende des RJ 45-Kabels mit einem beliebigen CAN-Bus Anschluss eines NH-Messmoduls.
- Weitere NH-Messmodule verbinden Sie in Reihe mit dem 1. NH-Messmodul über die CAN-Bus Anschlüsse.

6.2 Installation LCD Display für Monitoring

Verbinden Sie das "LCD Display für Monitoring" mit dem Netzteil für Display und ModBus mit dem dem LCD-Display beiliegenden RJ 12-Kabel.

Hinweis:

Bitte beachten Sie, dass das beigelegte Kabel eine Länge von 2 Metern hat. Versuchen Sie das Netzteil und Display so zu platzieren, dass die Kabellänge zur Verbindung der Geräte ausreicht. Längere Kabel sind im Handel erhältlich. Es kann auch ein RJ 11-Kabel genutzt werden.

6.3 Bedienung LCD Display für Monitoring

Abb. 7: LCD Display für Monitoring

Die Anzeige am Display ist folgendermaßen aufgebaut:

- Der Punkt am oberen Bildschirmrand zeigt den derzeitig ausgewählten Menüpunkt an.
- Die Funktionstasten F1–F4 f
 ühren die im unteren Bildschirmrand abgebildete Funktion aus. In der Abbildung: F1 = "→", F2 = "↑", …
- Mit den Pfeiltasten "→" (F1) und "←" (F4) navigieren Sie durch die verschiedenen Anzeigeoptionen des Displays.
- Mit den Pfeiltasten "↑" (F2) und "↓" (F3) navigieren Sie durch die an dem Display angeschlossenen NH-Messmodule.

Hinweis:

Nachfolgend wird zur vereinfachten Darstellung nur die Anzeige des Displays dargestellt.

6.3.1 Einrichtung eines Messmoduls am LCD Display für Monitoring

Hinweis: Jede ModBus-Adresse darf in einem Verbund von Messmodulen nur einmal vorkommen. Sollten zwei Messmodule mit identischer ModBus-Adresse verbunden werden, führt dies zu einem Kommunikationsfehler. Verbinden Sie die Module in diesem Fall einzeln und vergeben Sie unterschiedliche ModBus-Adressen.

■ Navigieren Sie mit den Pfeiltasten "→" (F1) oder "←" (F4) zum Menüpunkt "Extra" auf die Anzeige "Setup Auswahl" und bestätigen Sie den Menüpunkt "Geräteliste" mit "ok" (F3).

■ Wählen Sie mit der Pfeiltaste "↓" (F2) eine freie Zeile aus (000 ------).

DE

Sollten alle Einträge 1–5 in der Liste belegt sein, gelangen Sie mit der Taste "6–10" (F3) in die Geräteliste 6-10. Analog gelangen Sie in die Gerätelisten 11-15 und 16-20.

Mit der gleichen Taste gelangen Sie wieder zur Liste 1-5 zurück.

Bestätigen Sie die freie Zeile mit der Taste "edit." (F4).

Geben Sie die Seriennummer (vgl. Abschnitt 3.5 "Seriennummer") des hinzuzufügenden NH-Messmoduls ein.

Die Eingabe erfolgt mit den Tasten " \rightarrow " (F2) und "ok" (F4).

	Seriennummer	-
SerN	H 501700000	
	0023456789	
4) > scan. ok	:

- Drücken Sie "ok" (F4), wenn die aktuell markierte Zahl in der oberen Zeile "SerN" stimmt.
- Stimmt die Zahl nicht, wählen Sie mit der Taste "→" (F2) in der zweiten Zeile die richtige Zahl aus und bestätigen Sie diese mit "ok" (F4).
- Wiederholen Sie diesen Vorgang, bis Sie die gesamte Seriennummer richtig eingegeben haben.
- Bestätigen Sie die Seriennummer mit der Taste "scan." (F3).

- Hinweis:

Sollten Sie sich vertippt haben: Bestätigen Sie so oft mit "ok" (F4) bis die falsch angegebene Zahl wieder markiert ist. Am Ende der oberen Zeile "SerN" springt die Markierung wieder an den Anfang.

- Vergeben Sie eine von Ihnen festgelegte ModBus-Adresse nach dem gleichen Bedienschema wie im vorherigen Schritt.
- Bestätigen Sie Ihre Eingabe mit der Taste "sich." (F3) und warten Sie ca. 5 Sekunden.

Das Display nimmt in dieser Zeit keine Eingaben an.

6 Installation und Bedienung Zubehör

- Hinweis:

Zulässige Werte liegen im Bereich von 001 bis 247. Größere Werte werden beim Bestätigen auf "sich." (F3) mit einer Fehlermeldung quittiert und nicht angenommen.

Wird die Seriennummer nicht in der ModBus-Kette gefunden, erscheint folgender Text im unteren Displayrand: "Adr. nicht gespeich.".

Überprüfen Sie Ihre Eingabe der Seriennummer, alle ModBus-Verbindungen und stellen Sie sicher, dass das NH-Messmodul eingeschaltet ist (vgl. Abschnitt 4.3.2 "Einschalten des NH-Messmoduls").

Nach erfolgreicher Einrichtung wird das NH-Messmodul mit dem im Gerät hinterlegten Namen in der Geräteliste angezeigt. Es kann mit der Einrichtung eines weiteren Geräts begonnen werden (leere Zeile auswählen), das Gerät editiert werden "edit." (F4) oder auf die Einstellungsseite zurückgekehrt werden "1" (F1).

Folgende Funktionen finden sich unter dem Auswahlpunkt "edit" (F4):

- das Gerät entfernen "entf." (F2),
- ein Gerät mit einer anderen Seriennummer an der entsprechende Position einfügen "Adr." (F3),
- den Namen des Gerätes editieren "Name" (F4).
- Nutzen Sie auf dem Bildschirm "Gerätenamen edit" die Taste "ok" (F4) um den aktuell ausgewählten Buchstaben der oberen Reihe zu bestätigen.
- Ändern Sie mit den Tasten "→" (F2) und "↓" (F3) den aktuell ausgewählten Buchstaben.
- Mit der Taste "1" (F1) gelangen Sie zur Bestätigung des eingegebenen Namens.

- Drücken Sie die Taste "sich." (F3), um den Namen zu speichern.
- Drücken Sie "edit." (F4), um die Änderungen anzupassen, und "1" (F1), um die Änderungen zu verwerfen.

6.3.2 Anpassung der Topologie des Messmoduls

Diese Einstellung erfolgt für jedes Messmodul einzeln.

■ Navigieren Sie mit den Pfeiltasten "→" (F1) oder "←" (F4) zu einem der Oberpunkte mit der Ausnahme von "Extra".

Der Punkt am oberen Bildschirmrand muss sich an einem der markierten Elemente befinden:

U⊥U∆ I S P Q cos f Uh Ih W Extra

- Wählen Sie mit den Pfeiltasten "↑" (F2) oder "↓" (F3) das zu konfigurierende Messmodul aus.
- Navigieren Sie mit den Pfeiltasten "→" (F1) oder "←" (F4) zum Menüpunkt "Extra" auf die Anzeige "Geräte Setup" und bestätigen Sie den Menüpunkt "Topologie" mit "ok" (F3).
- Wählen Sie die von Ihnen verwendete Anschlussvariante mit der Taste "↓" (F2) und bestätigen Sie die Auswahl mit "ok" (F3).

Hinweis:

Bitte beachten Sie, dass die Konfiguration oben nur für das Messmodul der Größe NH00 möglich ist.

6.3.3 Anpassung der ModBus-Baudrate

→ Hinweis:

Richten Sie erst alle Messmodule am Display ein, bevor Sie die Baudrate ändern, sonst führt dies zu Kommunikationsfehlern. Der Standartwert der Baudrate beträgt 19200.

- Navigieren Sie mit den Pfeiltasten "→" (F1) oder "←" (F4) zum Menüpunkt "Extra" auf die Anzeige "Setup Auswahl", wählen Sie den Menüpunkt "Modbus" mit der Pfeiltaste "↓" (F2) und bestätigen Sie diesen mit "ok" (F3).
- Wählen Sie die gewünschte Baudrate mit der Taste "↓" (F2) und bestätigen Sie mit "ok" (F3).
- Um das Menü ohne Änderung der Baudrate zu verlassen, drücken Sie "1" (F1).

6.3.4 Einstellung der Sprache des LCD Display für Monitoring

- Navigieren Sie mit den Pfeiltasten "→" (F1) oder "←" (F4) zum Menüpunkt "Extra" auf die Anzeige "Setup Auswahl".
- Wählen Sie mit der Pfeiltaste "↓" (F2) den Menüpunkt "System/Sprache" bzw. "System/Language" aus.
- Bestätigen Sie den Menüpunkt mit "ok" (F3).
- Drücken Sie die Taste "Spra." (F3).
- Drücken Sie die Taste "edit." (F4) und wählen Sie mit "∪" (F4) die gewünschte Sprache.

6.3.5 Einstellung der Display Beleuchtung

- Navigieren Sie mit den Pfeiltasten "→" (F1) oder "←" (F4) zum Menüpunkt "Extra" auf die Anzeige "Setup Auswahl".
- Wählen Sie mit der Pfeiltaste "1" (F2) den Menüpunkt "Display" aus und bestätigen Sie mit "ok" (F3).

	LCD Parameter	
Contr	075	%
LED	050	%
÷	Test Dimm ed.	it.

- Drücken Sie die Taste "edit." (F4), um Einstellungen für Kontrast und Beleuchtungsstärke zu ändern.
- Passen Sie mit den Tasten "–" (F3) und "+" (F4) den Wert für den Kontrast an.
- Drücken Sie die Taste "1" (F2), um in das Menü zur Einstellung der Beleuchtungsstärke zu gelangen.
- Passen Sie diese analog mit den Tasten "-" (F3) und "+" (F4) an.
- Drücken Sie erneut "↓" (F2), um mit "ja" (F3) die Änderungen zu speichern oder mit "nein" (F1) die Änderungen zu verwerfen.
 Beachten Sie, dass diese Bestätigung nur angezeigt wird, wenn Werte verändert wurden.
- Drücken Sie die Taste "Dimm", um die Einstellungen für die Leuchtdauer und Stärke der Beleuchtung bei gedimmtem Zustand analog zu den Einstellungen für Kontrast und Beleuchtungsstärke vorzunehmen.

7 Lagerung und Entsorgung

7.1 Lagerung

Wenn die Geräte über einen längeren Zeitraum nicht im Einsatz sind, empfiehlt Rittal das Gerät spannungsfrei zu schalten und vor Feuchtigkeit und Staub zu schützen.

7.2 Entsorgung

Da alle beschriebenen Produkte aus den Bestandteilen "Gehäuse" und "Leiterplatte" bestehen, sind die Geräte zur Entsorgung der Elektronikverwertung zuzuführen. DE

8 Technische Daten

DE

8 Technische Daten

NH-Messmodul	NH00	NH1	NH2	NH3
BestNr.	9343.070	9343.170	9343.270	9343.370
B x H x T [mm]	102 x 108 x 68	170 x 123 x 92	185 x 123 x 107	214 x 123 x 107
I _n (max +20 %)	150 A	250 A	400 A	600 A

Tab. 25: Allgemeine technische Daten

Wird beim NH-Messmodul NH00 der obere Anschluss verwendet, reduziert sich der maximal zulässige Strom I_n um 10 % (entsprechend I_n = 135 A).

Netzteil für Display und ModBus				
BestNr.	9343.410			
B x H x T [mm]	71 x 91 x 61			

Tab. 26: Allgemeine technische Daten Netzteil

	LCD	Display	, für	Monitoring
--	-----	---------	-------	------------

BestNr.	9343.400
B x H x T [mm]	96 x 96 x 46

Tab. 27: Allgemeine technische Daten LCD Display

8.1 Umgebungsbedingungen

8.1.1 Umgebungsbedingungen für NH-Messmodul

Umgebungsbedingungen

Umgebungstemperatur	-25°C+55°C
Lager- und Transporttemperatur	-25°C+85°C (Lagerung bei den unteren oder oberen Temperaturen, kann zur Alterung der Kondensatoren führen)
Luftfeuchtigkeit	5%95 % relative Feuchte, nicht kondensierend
Schutzart	IP20 / DIN EN 60529
Verschmutzungsgrad	3 nach DIN EN 60947
Höhe	Max. 2000 m ü. NHN

Tab. 28: Umgebungsbedingungen für NH-Messmodul

8.1.2 Umgebungsbedingungen für Netzteil für Display und ModBus

Umgebungsbedingungen	
Umgebungstemperatur	-5°C+55°C
Lager- und Transporttemperatur	-25°C+85°C
Luftfeuchtigkeit	5%95 % relative Feuchte, nicht kondensierend
Schutzart	IP20 / DIN EN 60529

Tab. 29: Umgebungsbedingungen für Netzteil für Display und ModBus

8.1.3 Umgebungsbedingungen für Display für Monitoring

Umgebungsbedingungen

gggg	
Umgebungstemperatur	-5°C+55°C
Lager- und Transporttemperatur	-25°C+85°C
Luftfeuchtigkeit	5%95 % relative Feuchte, nicht kondensierend
Schutzart	IP 51 (Frontseite) / DIN EN 60529 IP 41 (Gehäuse)

Tab. 30: Umgebungsbedingungen für Display für Monitoring

Elektrische Daten 8.2

8.2.1 Elektrische Daten NH-Messmodul

Elektrische Daten	
Versorgungsspannung (L1–L2)	400 V AC (±10 %) 50/60 Hz
Leistungsaufnahme Stand-by (keine Kommunikation)	< 1 W
IEC Schutzklasse	П
Isolationsklasse	CAT III / 300 VAC (DIN EN 61010-1) CAT III entspricht Verteilungsebene
Externe Spannungsversor- gung	24 V DC (-10 % /+20 %)
Anschluss	RJ 45 Rittal CAN, wird durchgeschleift
Verwendung	Optionale Versorgung Controller und Kommuni- kation, Pufferung RTC

Messtechnik Spannungseingänge

Phasenanzahl	3	
Spannung Phase - N	230 V AC (±10 %)	
Spannung Phase - Phase	400 V AC (±10 %)	
Eingangsimpedanz	>2 MΩ	
Frequenz	4565 Hz	
Sicherungsschutz	Interne Sicherung L2 (nicht austauschbar)	
Messtechnik Stromeingänge		
Primärstromeingang	$\rm I_n$ des NH-Messmoduls, max. 120 % $\rm I_n$	
Überstrombelastung	10 · I _n (1 Sekunde)	
Eingangsimpendanz	0,071 Ω	
Frequenz	4565 Hz	
Messtechnik Eingänge (Stecker)		
Spannungsversorgung (3 Phasen)	5 pol. Platinenstecker (2 Pole nicht bestückt)	
Stromversorgung (3 Phasen)	6 pol. Stecker	
N-Anschluss	2 pol. Stecker	

Tab. 31: Elektrische Daten NH-Messmodul

DE

8.2.2 Elektrische Daten Netzteil für Display

Elektrische Daten

Versorgungsspannung	85265 V AC/DC 50/60 Hz
Ausgangsstrom	0,42 A
Ausgangsspannung	24 V DC

Tab. 32: Elektrische Daten Netzteil für Display

8.3 Schnittstellen

8.3.1 Schnittstellen NH-Messmodul

Schnittstellen

CAN-Bus Rittal spezifisch als CMC III Sensor	durchgeschleift
Baudrate	1001000 kBit/s (Abhängig von Kabellänge)
Gleichtaktunterdrückung (Com- mon Mode Range)	-27+40 V
Isolation	500 V zu RS 485 und USB
ESD	6 kV HBM
Stecker	RJ 45 (2 x)
RS 485 RTU (Slave)	durchgeschleift
Baudrate	9,61000 kBit/s (abhängig von Kabellänge)
Gleichtaktunterdrückung (Com- mon Mode Range)	-7+12 V
ESD	8 kV HBM
Stecker	RJ 45 (2 x)
USB OTG	
Version/Speed	USB 2.0/Full-Speed
Speed	12 Mbit/s
ID Pin level	Keine Verbindung zu ID PIN: NH-Messmodul ist "Device" Brücke von ID PIN zu GND: NH-Messmodul ist "Host"
Geräteprofil	Massenspeicher 64 MB (FAT16)
Isolation	500 V gegen CAN-Bus; keine gegen ModBus RTU
ESD	4 kV HBM
Kabellänge	Max. 3 m
Anschluss	Mini-USB AB Übersetzung via Verlängerungskabel auf USB Micro AB
Versorgung USB Stick	Max. 100 mA

Tab. 33: Schnittstellen NH-Messmodul

8.3.2 Schnittstellen Netzteil für Display

Schnittstellen

1 x ModBus RTU (RJ 12)

Tab. 34: Schnittstellen Netzteil für Display

8.3.3 Schnittstellen Display für Monitoring

Schnittstellen

1 x ModBus RTU (RJ 12)	
2 x ModBus RTU (RJ 45)	

Tab. 35: Schnittstellen Display für Monitoring

8.4 Messwerte

Messwerte	Beschreibung
Spannung V1/V2/V3	Spannung Phase-N
Spannung U12/U23/U31	Spannung Phase x-Phase y
Strom 11/12/13/IN	Ströme der Phase L1, L2 und L3. Messung findet über Stromwandler statt. Strom für N wird er- rechnet.
Energiezählung: 3P, ΣP 3Q, ΣQ 3S, ΣS	Es wird jeweils der Momentanwert gemessen und eine Summe aufaddiert.
Max. AVG P/Q/S	Berechnung des absoluten Durchschnittswerts von P, Q und S im Bezug auf ein 15 Minuten-In- tervall
cos φ	Berechnung des Leistungsfaktors
Oberwellen THD U/THD I	Berechnung der Oberwellen bis Rang 31; Werte auf Abfrage
Frequenz der Aktualisierung der Messung	Alle 1 Sekunde

Tab. 36: Messwerte

8.5 Messgenauigkeit (nach EN 61557-12)

Messgenauigkeit	
Spannungsmessung	Klasse 0,2
Stromwandler	0,5 (ISO EN 61289-1/2)
Strommessung mit Wandler	Klasse 1,5
Leistungsmessung mit Wandler	Klasse 2

Tab. 37: Messgenauigkeit

9 Service

Zu technische Fragen wenden Sie sich bitte an: Tel.: +49(0)2772 505-9052 E-Mail: info@rittal.de Homepage: www.rittal.de Bei Reklamationen oder Servicebedarf wenden Sie sich bitte an: Tel.: +49(0)2772 505-1855 E-Mail: service@rittal.de

Rittal – The System.

Faster – better – everywhere.

- Enclosures
- Power Distribution
- Climate Control
- IT Infrastructure
- Software & Services

You can find the contact details of all Rittal companies throughout the world here.

www.rittal.com/contact

POWER DISTRIBUTION CLIMATE CONTROL

IT INFRASTRUCTURE > SOFTWARE & SERVICES

FRIEDHELM LOH GROUP