Assembly and operating instructions

Montage-, Installations- und Bedienungsanleitung
Manuel d’installation et de maintenance
Montage- en bedieningshandleiding
Montage- och hanteringsanvisning
Istruzioni di montaggio e funzionamento
Instrucciones de montaje
取扱説明書
1 Notes on documentation 4
 1.1 Associated documents 4
 1.2 CE labelling 4
 1.3 Retention of documents 4
 1.4 Symbols used 4
2 Safety notes 4
3 Device description 5
 3.1 Functional description 5
 3.1.1 How it works 5
 3.1.2 Control 5
 3.1.3 Bus mode (Comfort controller only) 5
 3.1.4 Safety equipment 6
 3.1.5 Condensation 6
 3.1.6 Leak detection 6
 3.1.7 Door limit switch 6
 3.1.8 Additional interface X3 (Comfort controller only) 6
 3.2 Proper use 6
 3.3 Scope of supply 7
4 Assembly and connection 7
 4.1 Choosing the installation site 7
 4.2 Assembly instructions 7
 4.2.1 General 7
 4.2.2 Layout of the electronic components in the enclosure 8
 4.3 Fitting the air/water heat exchanger 8
 4.3.1 Cutting out the enclosure 9
 4.3.2 Fitting the air/water heat exchanger ... 9
 4.4 Connecting the condensate discharge ... 9
 4.5 Connecting the water connection 10
 4.5.1 Notes on water quality 11
 4.6 Notes on electrical installation ... 11
 4.6.1 Connection data 11
 4.6.2 Overvoltage protection and supply line load 11
 4.6.3 Door limit switch 12
 4.6.4 Notes on the flicker standard 12
 4.6.5 Potential equalisation 12
 4.7 Carrying out the electrical installation 13
 4.7.1 Bus connection (only when interconnecting several units with a Comfort controller) 13
 4.7.2 Installing the power supply 15
 4.8 Finalising assembly 17
 4.8.1 Finalising air/water heat exchanger assembly 17
5 Commissioning 17
6 Operation 17
 6.1 Control using the Basic controller ... 17
 6.1.1 Properties 17
 6.1.2 Operating and error display ... 18
 6.1.3 Basic controller test mode 18
 6.1.4 Setting the temperature 19
 6.2 Control using the Comfort controller .. 19
 6.2.1 Properties 19
 6.2.2 Launching test mode 20
 6.2.3 General programming information ... 20
 6.2.4 Editable parameters 21
 6.2.5 Programming overview 22
 6.2.6 Defining system messages for evaluation .. 23
 6.2.7 Setting the master-slave identifier 23
 6.2.8 Evaluating system messages 24
7 Inspection and maintenance 25
 7.1 General 25
8 Storage and disposal 26
9 Technical specifications 27
10 List of spare parts 30
11 Further technical information 32
 11.1 Hydrological data 32
 11.2 Characteristic curves 33
 11.2.1 Water resistance 33
12 Appendix 1: Cut-out and hole sizes 36
 12.1 Dimensions for external mounting 36
13 Appendix 2: Preparation and maintenance of the water in recooling systems 38
1 Notes on documentation

These assembly instructions are aimed at tradespersons who are familiar with assembly and installation of the air/water heat exchanger, and are trained specialists who are familiar with the operation of the air/water heat exchanger.

1.1 Associated documents
There are two sets of instructions for the unit types described here:
– Assembly and installation instructions enclosed with the unit in the form of a paper document
– Assembly, installation and operating instructions enclosed with the unit in the form of a PDF file (Adobe Acrobat) on CD-ROM.

We cannot accept any liability for damage associated with failure to observe these instructions. Where applicable, the instructions for any accessories used also apply.

1.2 CE labelling
The declaration of conformity is supplied with the unit as a separate document.

1.3 Retention of documents
These instructions and all associated documents constitute an integral part of the product. They must be given to the plant operator. The plant operator is responsible for storage of the documents so they are readily available when needed.

1.4 Symbols used
Please observe the following safety instructions and other notes in this guide:

Symbol for an instructed action:
• The bullet point indicates that you should perform an action.

Safety and other instructions:

![Danger! Immediate danger to life and limb!]

![Note! Potential threat to the product and its environment.]

Note:
Useful information and special features.

2 Safety notes

Please observe the following general safety instructions when assembling and operating the unit:
– Assembly, installation and servicing may only be performed by properly trained specialists.
– The minimum water inlet temperature of +1°C must not be reduced at any point in the water cycle. Otherwise there is danger of frost damage!
– Use antifreeze agents only with the manufacturer’s consent.
– Do not obstruct the air inlet and air outlet of the air/water heat exchanger inside and outside the enclosure (see also Section 4.2.2).
– The heat loss of the components installed in the enclosure must not exceed the specific useful cooling output of the air/water heat exchanger.
– The air/water heat exchanger must always be transported in a vertical position.
– Use only original spare parts and accessories.
– Do not make any changes to the air/water heat exchanger other than those described in these instructions or associated instructions.
– The mains connector of the air/water heat exchanger must only be connected and disconnected with the system de-energised. Connect the fuse specified on the rating plate.
3 Device description

Depending on the model chosen, your air/water heat exchanger may vary in appearance from the illustrations contained in these instructions. However, the functions are identical in principle.

3.1 Functional description

Air/water heat exchangers are designed and built to dissipate heat from enclosures by cooling the air inside the enclosure and so protect the temperature-sensitive components. Air/water heat exchangers are particularly appropriate for the temperature range of +40°C to +70°C where comparable units, such as air/air heat exchangers, enclosure cooling units or filter fans, cannot be used for system reasons to effectively and economically dissipate heat loss. The air/water heat exchanger is mounted on the side wall or at the rear of an enclosure.

3.1.1 How it works

The air/water heat exchanger comprises of three main components (cf. Fig. 2): Heat exchanger package (1), fan (2) and the magnetic valve (3) connected with each other using pipes.

The heat loss of the enclosure is dissipated in a membrane heat exchanger to the water coolant. A fan blows the internal enclosure air over the heat exchanger (1); except for the inlet and outlet water and the condensed water discharge, the unit is closed to the environment.

The flow regulator (3) controls the cooling output by changing the water flow volume depending on the required housing temperature and the water inlet temperature.

3.1.2 Control

Rittal enclosure air/water heat exchangers are fitted with a controller for setting the functions of the heat exchanger. Depending on the design, this is either a Basic controller (display of the operating status via LED) or a Comfort controller (display plus extended functions, see chapter “6 Operation”, page 17).

3.1.3 Bus mode (Comfort controller only)

The serial unit interface X2 allows you to create a bus connection with up to ten air/water heat exchangers using the master-slave cable (shielded, four-wire cable, Model No. SK 3124.100). This allows you to implement the following functions:

- Parallel unit control (the air/water heat exchangers in the network can be switched on and off simultaneously)
- Parallel door status message (“door open”)
- Parallel collective fault message

Data is exchanged via the master-slave connection. During commissioning, assign an address to each unit that also includes the identifier “master” or “slave”.

Legend

1. Cover
2. Controller
3. X2 master-slave connection (Comfort controller)
4. X1 terminal strip (unit rear)
5. X3 optional serial interface (unit rear)
6. Rating plate
7. Condensate discharge (underside of the unit)
8. Cooling water inflow (underside of the unit)
9. Cooling water return (underside of the unit)
10. Dispatch bag

Fig. 1: Device description

Fig. 2: Air/water heat exchanger
3 Device description

3.1.4 Safety equipment
- To protect against overcurrent and overtemperature, the fan is equipped with a thermal winding protection.
- The unit has one (in the case of the Basic controller) or two (in the case of the Comfort controller) integral floating contacts on the connection terminal (system message relay with change-over contact, terminal 3 – 5) which may be used to retrieve messages from the heat exchanger, e.g. via PLC.
- Units with Basic and Comfort controllers are also equipped with a condensate alarm.

3.1.5 Condensation
At high levels of humidity and low cooling water temperatures inside the enclosure, condensation may form on the heat exchanger. Any condensation that forms on the heat exchanger (with high humidity and low water temperatures) is routed to the right and/or rear out of the unit via a drain opening in the evaporator tray. For this purpose, a hose must be connected to the condensate nozzle (see “4.4 Connecting the condensate discharge”, page 9). The condensate must be able to run off freely. The hose used for draining off condensate must be laid free from kinks and checked for correct drainage.
Units with Basic and Comfort controllers are also equipped with a condensate alarm.
Condensate hoses are available as accessories (refer also to the accessories section in the Rittal Catalogue).

3.1.6 Leak detection
If a leakage or pipe breakage occurs in the water circuit of the air/water heat exchanger, a magnetic valve immediately stops the cooling water supply, the floating change-over contact activated and the fan switched off.

3.1.7 Door limit switch
The air/water heat exchanger may be operated with a door limit switch connected. The door limit switch is not included with the supply (available as an accessory, Model No. PS 4127.000).
The door limit switch function causes the fan and the magnetic valve in the air/water heat exchanger to be switched off after approximately 15 seconds when the enclosure door is opened (contacts 1 and 2 closed). This prevents the formation of condensation inside the enclosure while the enclosure door is open.
The fan will start up after about 15 seconds on closure of the door. Connection is made at the terminals 1 and 2. The extra-low voltage is supplied by the internal power pack; the current is approx. 30 mA DC.

3.1.8 Additional interface X3
(Comfort controller only)

Note:
The electrical signals at the interface are of an extra-low voltage (not extra-low safety voltages in accordance with EN 60 335).

An additional interface card may be connected to the 9-pole SUB-D connector X3 in order to incorporate the air/water heat exchanger into higher-level monitoring systems (available as an accessory, interface card Model No. SK 3124.200).

3.2 Proper usage
Rittal enclosure air/water heat exchangers were developed and designed in accordance with the state-of-the-art and the recognised rules governing technical safety. Nevertheless, if used improperly, they may pose a threat to life and limb or cause damage to property. The unit is only intended for cooling enclosures. Any other use is deemed improper.
The manufacturer will not be liable for any damages caused as a result of improper use, or for incorrect assembly, installation or use. All risk is borne solely by the user.
Proper usage also includes the observation of all valid documents and compliance with the inspection and servicing conditions.
4 Assembly and connection

3.3 Scope of supply
The unit is supplied in a packaging unit in a fully assembled state.
Please check the delivery for completeness:

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air/water heat exchanger</td>
</tr>
<tr>
<td>1</td>
<td>Dispatch bag:</td>
</tr>
<tr>
<td>1</td>
<td>– Sealing tape</td>
</tr>
<tr>
<td>1</td>
<td>– Plug-in terminal strip</td>
</tr>
<tr>
<td>1</td>
<td>– Assembly and installation instructions</td>
</tr>
<tr>
<td>1</td>
<td>– Assembly, installation and operating instructions on CD-ROM</td>
</tr>
<tr>
<td>1</td>
<td>– Declaration of conformity</td>
</tr>
<tr>
<td>1</td>
<td>Drilling template</td>
</tr>
</tbody>
</table>

Tab. 1: Scope of supply

4 Assembly and connection

4.1 Choosing the installation site
When choosing the installation site for the enclosure, please observe the following:

– The site for the enclosure, and hence the arrangement of the air/water heat exchanger, must be carefully selected so as to ensure good ventilation. Depending on the siting of the unit, if several units are installed directly adjacent to one another, the distance from the wall must be at least 200 mm.

– The air/water heat exchanger must be installed and operated in a vertical position (maximum deviation: 2°).

– The site must be free from excessive dirt and moisture.

– The ambient temperature must not exceed +70°C.

– It must be possible to fit a condensate discharge (see “4.4 Connecting the condensate discharge”, page 9).

– It must be possible to fit a cooling water supply and return (see “4.5 Connecting the water connection”, page 10).

– The mains connection data as stated on the rating plate of the unit must be guaranteed.

4.2 Assembly instructions

4.2.1 General
– Check the packaging carefully for signs of damage. Packaging damage may be the cause of a subsequent functional failure.

– The enclosure must be sealed on all sides (IP 54). Increased condensation will occur if the enclosure is not airtight.

– The air inlet and outlet must not be obstructed on the inside of the enclosure.

– In order to avoid excessive condensation inside the enclosure, we recommend installing a door limit switch (e.g. PS 4127.000) which deactivates the air/water heat exchanger when the enclosure door is opened (see “3.1.7 Door limit switch”, page 6).
4 Assembly and connection

4.2.2 Layout of the electronic components in the enclosure

Note!
Risk of condensation!
When arranging the components inside the enclosure, please ensure that the cold airflow from the air/water heat exchanger is not directed at active components. Please also ensure that the cold airflow is not directed at the warm exhaust airflow from active components such as converters. This may lead to an air short-circuit and therefore prevent adequate climate control, or may even cause the air/water heat exchanger’s internal safety devices to cease cooling operation.

![Fig. 3: Never direct the cold airflow at active components](image)

Exercise particular caution with the airflow from the blowers of built-in electronic components (cf. Fig. 3). Components for targeted air routing are available as accessories – please refer to the chapter on “System climate control” in the Rittal Catalogue.

Note:
The air/water heat exchangers should never be fitted directly behind the mounting plate. If it is not possible to install the unit any other way, appropriate air baffle plates should be used, and air inlet and outlet openings should be provided in the mounting plate.

![Fig. 4: Targeted air routing inside the enclosure](image)

4.3 Fitting the air/water heat exchanger

The enclosure air/water heat exchanger can be mounted on one of the side walls, rear panel or the door of the enclosure.

For this purpose, the appropriate enclosure panel or door must be cut out using the supplied drilling template.

Note:
It is important to ensure even air circulation inside the enclosure. Under no circumstances should air inlet and outlet openings be obstructed, otherwise the cooling performance of the unit will be reduced. Ensure a suitable distance from electronic components and other installed enclosures so that the required air circulation is not obstructed and prevented.

One cold air outlet from the air/water heat exchanger must be kept open at all times when operating with the air duct, to prevent the accumulation of cold air inside the unit.
4.3.1 Cutting out the enclosure
• Stick the supplied drilling template with adhesive tape to the mounting position on the enclosure. The heat exchanger is suitable for both external and internal mounting. There are dimensioning lines on the drilling template to suit the installation type for your air/water heat exchanger.

Risk of injury!
Carefully deburr all cut-outs to prevent injuries caused by sharp edges.
• Make the cut-outs including the line width as per the drilling template. Deburr the cut-outs.

4.3.2 Fitting the air/water heat exchanger
• Stick the supplied sealing tape appropriate for the installation type without any gaps to the rear or front of the heat exchanger.
• Check the door sealing for any damage.

Note:
The enclosure must be sealed on all sides. In particular, in the area of the cable inlet openings and the enclosure base.

Fig. 5: “External” mounting sealing

Fig. 6: “Internal” mounting sealing

4.4 Connecting the condensate discharge
A flexible condensate discharge hose (Ø 1/2”) can be fitted to the air/water heat exchanger. The condensate discharge
– must be laid with a suitable and constant gradient (no siphoning)
– must be laid without kinks
– must not have a reduced cross-section if extended.
The condensate hose is available as an accessory (refer also to Accessories in the Rittal Catalogue).
4 Assembly and connection

4.5 Connecting the water connection

A compression-proof flexible condensate discharge hose (Ø 1/2”) for both the supply and the return can be fitted to the air/water heat exchanger. The cooling water hose
- must be laid without kinks
- must not have a reduced cross-section if extended and, if necessary, must be insulated.

Fig. 7: Connecting the condensate discharge

Legend
1 Cooling water connection
2 Condensate discharge

- Connect a suitable hose to the condensate nozzle (at the bottom of the unit) and secure it with a hose clip (with 2 Nm torque).
- Lay the condensate hose, e.g. into a drain.

Fig. 8: Laying the condensate discharge

Legend
1 Cooling water connection
2 Condensate discharge

- Connect a suitable hose to the cooling water connecting pieces and secure it with a hose clip (with 15 Nm torque).

Note:
The water circuit should be protected from ingress of dirt or excess pressure (maximum permitted operating pressure 10 bar)!

Note:
Observe the flow direction and check for leaks!

The units do not have any separate ventilation.
- For pressure-sealed systems, install the appropriate ventilation equipment on the water side.
4.5.1 Notes on water quality

To ensure the reliable operation of the above-mentioned units, the VBG guidelines for cooling water must be observed (VGB-R 455 P).

The cooling water must not contain any limescale deposits or loose debris; in other words, it should have a low level of hardness, in particular, a low level of calcium hardness. In particular, for recooling within the plant, the calcium hardness should not be too high. On the other hand, the water should not be so soft that it attacks the materials. When recooling the cooling water, the salt content should not be allowed to increase excessively due to the evaporation of large quantities of water, since electrical conductivity increases as the concentration of dissolved substances rises, and the water thereby becomes more corrosive.

- Always add the appropriate volume of fresh water.
- Always remove part of the enriched water.

The following criteria for the cooling water must be observed:

- Water with high gypsum content is unsuitable for cooling purposes because it has a tendency to form boiler scale that is particularly difficult to remove.
- The cooling water should be free from iron and manganese, because otherwise deposits may occur that accumulate in the pipes and block them.
- At best, organic substances should only be present in small quantities, because otherwise sludge deposits and microbiological contamination may occur.

4.6 Notes on electrical installation

When performing the electrical installation, it is important to observe all valid national and regional regulations as well as the provisions of the responsible power supply company. The electrical installation may only be performed by a qualified electrician who is responsible for compliance with the applicable standards and regulations.

4.6.1 Connection data

- The connected voltage and frequency must correspond to the values stated on the rating plate.
- The air/water heat exchanger must be connected to the mains via an all-pin isolating device that ensures at least 3 mm contact opening when switched off.
- No additional temperature control may be connected upstream of the unit at the supply end.
- Install the pre-fuse specified on the rating plate (miniature circuit-breaker "K" characteristic or slow fuse) to protect the cable and equipment from short-circuits.
- The mains connection must ensure low-noise potential equalisation.

4.6.2 Overvoltage protection and supply line load

- The unit does not have its own overvoltage protection. Measures must be taken by the operator at the supply end to ensure effective lightning and overvoltage protection. The mains voltage must not exceed a tolerance of ±10%.
- In accordance with IEC 61 000-3-11, the unit is intended solely for use at sites with a continuous current-carrying capacity (incoming mains power supply) of more than 100 A per phase and with a supply voltage of 400/230 V. If necessary, the power supply company must be consulted to ensure that the continuous current-carrying capacity at the point of connection to the public grid is sufficient for connection of such a unit.
- The fans in single- and three-phase units are intrinsically safe (thermal winding protection). The same also applies to all transformer versions and to special-voltage units which are likewise equipped with a transformer.
- Install the slow pre-fuse specified on the rating plate (miniature circuit-breaker with "K" characteristic, motor circuit-breaker or transformer circuit-breaker) to protect the cable and equipment from short-circuits. Select a suitable motor circuit-breaker/transformer circuit-breaker in accordance with the information specified on the rating plate: Set it to the minimum specified value. This will achieve the best short-circuit protection for cables and equipment. Example: Specified setting range MS/TS 6.3 – 10 A; set to 6.3 A.
4 Assembly and connection

4.6.3 Door limit switch
– Each door limit switch must only be assigned to one air/water heat exchanger.
– Several door limit switches may be connected in parallel and operated on one air/water heat exchanger.
– The minimum cross-section of the connection cable is 0.3 mm² for a cable length of 2 m. We recommend the use of a shielded cable.
– The line resistance to the door limit switch must not exceed a maximum of 50 Ω.
– The door limit switch only supports a floating connection; no external voltages.
– The contact of the door limit switch must be closed when the door is open.

The safety extra-low voltage for the door limit switch is provided by the internal power pack: Current approx. 30 mA DC.
• Connect the door limit switch to terminals 1 and 2 of the connector.

4.6.4 Notes on the flicker standard
The flicker limits specified in standard EN 61 000-3-3 or -3-11 are adhered to, provided the supply impedance is less than approx. 1.5 Ω.
Where necessary, the unit operator should measure the connected impedance or consult the responsible power supply company. If there is no way of influencing the supply impedance and sensitive installed components (e.g. BUS) are subjected to interference, a line reactor or starting-current limiting device should be connected upstream of the air/water heat exchanger to restrict the startup current of the air/water heat exchanger.

4.6.5 Potential equalisation
Rittal recommends connecting a conductor with a nominal cross-section of at least 6 mm² to the potential equalisation connection point in wall-mounted air/water heat exchangers and incorporating it into the existing potential equalisation system.
According to the standard, the PE conductor in the mains connection cable is not classified as an equipotential bonding conductor.
4.7 Carrying out the electrical installation

4.7.1 Bus connection
(only when interconnecting several units with a Comfort controller)

When using several air/water heat exchangers, the serial unit interface can be used to connect up to ten air/water heat exchangers with the bus cable (Model No. SK 3124.100).

When interconnecting, please note the following:
– De-energise the air/water heat exchangers to be connected.
– Ensure proper electrical insulation.
– Make sure the cables are not laid in parallel to power lines.
– Make sure that the lines are short.

Note:
The electrical signals at the X2 interface are of an extra-low voltage (not extra-low safety voltages in accordance with EN 60 335).

Legend

1. Serial interface
2. Serial interface cable
3. Master-slave bus cable (Model No. SK 3124.100)

RTT Rittal TopTherm air/water heat exchanger
X1 Supply connection/door limit switch/alarms
X2 Master-slave connection Sub-D, 9-pole
X3 Serial interface Sub-D, 9-pole
St. Sub-D connector, 9-pole
Bu. Sub-D jack, 9-pole
Adr. Address

Fig. 10: Connection example: Master-slave operation
Fig. 11: Connection example: Door limit switch and master-slave operation

Legend
1 Master air/water heat exchanger
2 Slave air/water heat exchanger
3 2-door enclosure with two door limit switches
4 Enclosure with door limit switch
4.7.2 Installing the power supply

- Complete the electrical installation as per the wiring plan at the rear of the air/water heat exchanger.

- If you would like the system messages from the air/water heat exchanger to be evaluated via the system message relay, you should also connect a suitable low-voltage cable to connection terminals 3 – 5.

SK 3363.1xx, SK 3364.1xx, SK 3373.1xx, SK 3374.1xx, SK 3375.1xx

![Electrical wiring plan no. 1](image-url)
4 Assembly and connection

Fig. 13: Electrical wiring plan no. 2

Legend

- **A1** Power PCB
- **A2** Basic or Comfort controller
- **B1** Temperature sensor, internal temperature
- **C2** Operating capacitor
- **K1** Relay collective fault 1
- **K2** Relay collective fault 2
- **L1** LED operational green
- **L2** LED alarm red
- **M2** Fan
- **MV1** Magnetic valve
- **R1** Potentiometer for setting the temperature
- **S1** Door limit switch (without door limit switch: terminal 1, 2 open)
- **S2** Float switch (closed without water)
- **T1** Transformer (optional)
- **X1** Main terminal strip
- **X2** Master-slave connection
- **X3** Optional interface

Note:

For technical data refer to the rating plate.

<table>
<thead>
<tr>
<th>AC</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>cos φ = 1</td>
<td>L/R = 20 ms</td>
</tr>
<tr>
<td>I max. = 2 A</td>
<td>I min. = 100 mA</td>
</tr>
<tr>
<td>U max. = 250 V</td>
<td>U max. = 200 V</td>
</tr>
<tr>
<td></td>
<td>U min. = 18 V</td>
</tr>
<tr>
<td></td>
<td>I max. = 4 A</td>
</tr>
</tbody>
</table>

Tab. 2: Contact data

<table>
<thead>
<tr>
<th>Term</th>
<th>Level</th>
<th>NTC_E</th>
<th>NTC_I</th>
<th>NTC_A</th>
<th>NTC_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>Power</td>
<td>Kx</td>
<td>PE</td>
<td>L</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.8 Finalising assembly

4.8.1 Finalising the air/water heat exchanger assembly

- Connect the connector to the rear of the display.

5 Commissioning

- Once all the assembly and installation work is complete, switch on the power supply to the air/water heat exchanger.

The air/water heat exchanger starts running:
- With Basic controller: The green operating LED (“line”) is illuminated.
- With Comfort controller: The software version of the controller first appears for approx. 2 seconds, then the enclosure internal temperature appears in the 7-segment display.

You can now make your individual settings on the unit, e.g. set the temperature or (with Comfort controller only) assign the network identifier, etc. (refer to the “Operation” chapter).

6 Operation

You can operate the air/water heat exchanger using the controller on the front of the unit (Fig. 1, no. 2, page 5). Depending on the model, the unit is equipped with a Basic or Comfort controller.

6.1 Control using the Basic controller

For the SK 33xx.1xx unit types.

![Fig. 14: Basic controller](https://example.com/basic_controller.png)

Legend

1. Controller trim panel
2. Temperature setting
3. LED green (“line”)
4. LED red (“alarm”)
5. Reset button

6.1.1 Properties

- Three voltage variants are supported:
 - 115 V
 - 230 V
 - 400 V, 2-phase
- Integral start-up delay and door limit switch function
- Monitoring of all motors (fans)
- Visualisation of the operating status via LED display:
 - Voltage on, unit operational
 - Door open (only if door limit switch installed)
 - Warning of overtemperature
- Switching hysteresis: 5 K
- Floating system message contact in case of overtemperature
- Temperature setting (setting range 20 – 55°C) via potentiometer
- Test function

The air/water heat exchanger operates automatically, i.e. after switching on the power supply, the fan (see page 5, Fig. 2) will run continuously and permanently circulate the internal enclosure air. The magnetic valve controls the cooling water flow as specified by the temperature setpoint. The built-in Basic controller ensures automatic normal shut-down operation of the air/water heat exchanger by the value of the fixed preset switching difference of 5 K.
6 Operation

6.1.2 Operating and error display

The Basic controller monitors and controls the air/water heat exchanger. It indicates the operating and error status via the green and red LEDs (Fig. 14, nos. 3 and 4):

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green (line)</td>
<td>Illuminated</td>
<td>Voltage present, unit operational</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>Only with door limit switch installed:</td>
<td>In order to avoid condensation, close the enclosure door as quickly as possible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enclosure door open</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only with door limit switch installed:</td>
<td>Check the position of the door limit switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enclosure door closed</td>
<td></td>
</tr>
<tr>
<td>Red (alarm)</td>
<td>Illuminated</td>
<td>The enclosure internal temperature is 10 K above the set temperature.</td>
<td>Check the temperature setting. Check the heat exchanger and, if necessary, clean. Check the heat loss to be dissipated; it must not exceed the rated cooling capacity of the air/water heat exchanger.</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>Leakage alarm in the water circuit</td>
<td>Check the water hoses and, if necessary, clean or seal again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connection to board interrupted</td>
<td>Check, replace board if necessary</td>
</tr>
<tr>
<td>Off</td>
<td>No display</td>
<td>No power</td>
<td>Check power supply</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotary current phase monitoring:</td>
<td>Swap phases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“LED off” = Incorrect phase connection</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3: Operating and error display of the Basic controller

The overtemperature message (red LED illuminated) may also be polled via an integral floating contact on the connection terminal of the air/water heat exchanger (system message relay with change-over contact, see connection diagrams under “4.7.2 Installing the power supply”, page 15):

– Terminal 3: NC (normally closed)
– Terminal 4: C (connection of the supply voltage to the system message relay)
– Terminal 5: NO (normally opened)

The NC and NO definitions refer to the de-energised state. As soon as power is applied to the air/water heat exchanger, the system message relay picks up, so that the relay contacts change status (contact 3 – 4 open; contact 4 – 5 closed). This is the normal operating state of the air/water heat exchanger. As soon as an error message occurs or the power supply is interrupted, the relay drops out.

6.1.3 Basic controller test mode

The Basic controller is equipped with a test function, whereby the air/water heat exchanger commences cooling operation independently of the set temperature or door limit switch function.

First you must dismantle the trim panel of the controller.

• Switch off the mains voltage.
• Remove the louvred grille in which the controller is installed.
• Release the display lock from behind and pull it forwards slightly.

Fig. 15: Loosen the trim panel of the Basic controller
6 Operation

• Carefully raise the trim panel, e.g. using your thumb or a flat screwdriver, and remove it. You can now start test mode.
• Hold the rubberised potentiometer display (see Fig. 14, item 5, page 17) down while you switch the mains power back on, and keep the button (5) held down for a further 10 seconds (for access to the potentiometer, see also 6.1.3). The air/water heat exchanger starts running. This is signalled by an asynchronous flashing of the green LED. After approximately three minutes or upon reaching 15°C, test mode will end. The unit switches off and changes to normal operation.

6.1.4 Setting the temperature

To change the temperature setting:
• Dismantle the trim panel of the controller as described in “6.1.3 Basic controller test mode”, page 18.
• Set the required temperature on the temperature setting device (page 17, Fig. 14).
• Carefully push the trim panel onto the display until you hear it snap into place.
• Push the display back into the louvred grille.
• Re-attach the louvred grille to the air/water heat exchanger.

Note:
With the Basic controller, the temperature is preset at the factory to +35°C.
In order to save energy, do not set the temperature lower than that actually necessary.

6.2 Control using the Comfort controller
For the SK xxxx.500/.510/.540 and SK xxxx.504/.514/.544 unit types.

![Comfort controller](image)

Legend
1 Programming button, also display of the set temperature unit (degrees Celsius)
2 Set button
3 Programming button, also display of the set temperature unit (degrees Fahrenheit)
4 7-segment display

6.2.1 Properties
– Three voltage variants are supported:
 – 115 V
 – 230 V
 – 400 V, 2-phase
– Integral start-up delay and door limit switch function
– Protective function to prevent icing
– Monitoring of all motors (fans)
– Phase monitoring for three-phase units
– Master-slave function with a maximum of ten units. One unit functions as a master unit. Once the set temperature is reached by one of the connected slave units or in the event of the door limit switch function, the affected slave unit will report to the master unit, which will switch all the other air/water heat exchangers on or off as required.
– Switching hysteresis: Adjustable within the range 2 – 10 K, preset to 5 K.
– Visualisation of the current enclosure internal temperature and all error messages in the 7-segment display.
– Using an interface card (Model No. SK 3124.100), the unit may be incorporated into higher-level remote monitoring systems such as the Rittal Computer Multi Control CMC.

The air/water heat exchanger operates automatically, i.e. after switching on the power supply, the fan (see page 5, Fig. 2) will run continuously and permanently circulate the internal enclosure air. The fan and the magnetic valve are controlled by the Comfort controller.
The Comfort controller has a 7-segment display (Fig. 16, no. 4). After switching on the power supply, the current software version initially appears on this display for approx. two seconds. In regular operation, the display shows both the temperature (in degrees Celsius or Fahrenheit – users may switch between the two) and any error messages. The current enclosure internal temperature is usually displayed permanently. In the event of an error message, this will alternate with the temperature display. The unit is programmed using buttons 1 – 3 (Fig. 16). The relevant parameters also appear in the display.

6.2.2 Launching test mode
The Comfort controller is equipped with a test function, whereby the air/water heat exchanger commences cooling operation independently of the set temperature or door limit switch function.
• Simultaneously press buttons 1 and 2 (Fig. 16) for at least ten seconds.
The air/water heat exchanger starts running. After approximately three minutes or upon reaching 15°C, test mode is complete. The unit switches off and changes to normal operation.

6.2.3 General programming information
Using buttons 1, 2 and 3 (Fig. 16) you can change 24 parameters within the preset ranges (min. value – max. value).

In principle, the programming is identical for all editable parameters.

To enter programming mode:
• Press button 2 (“Set”) for approx. five seconds.
The controller is now in programming mode. While in programming mode, if you do not press any buttons for approx. 30 seconds, the display will first flash, then the controller will switch back to normal display mode. The “Esc” display indicates that any made changes have not been saved.
• Press the programming buttons ▲ (°C) or ▼ (°F) to switch back and forth between the editable parameters (see tables 4 and 5).
• Press button 2 (“Set”) to select the displayed parameter for editing.
The current value of this parameter is displayed.
• Press one of the programming buttons ▲ (°C) or ▼ (°F).
The “Cod” display will appear. In order to be able to change a value, you must enter the authorisation code “22”.
• Keep the programming button ▲ (°C) held down until “22” appears.
• Press button 2 (“Set”) to confirm the code.
You can now alter the parameter within the preset limits.
• Press one of the programming buttons ▲ (°C) or ▼ (°F) until the required value appears.
• Press button 2 (“Set”) to confirm the change.
You can now alter other parameters in the same way. There is no need to re-enter the authorisation code “22”.
• To exit programming mode, press button 2 (“Set”) again for approximately five seconds.
“Acc” will appear in the display to indicate that the changes have been saved. The display will then switch back to regular operation (enclosure internal temperature).
You can also program the Comfort controller using a diagnosis software package (Model No. SK 3159.100), the supply of which also includes a connection cable to the PC. The cable connector on the rear of the Comfort controller display serves as an interface.

Note on switching hysteresis:
With a low hysteresis and short switching cycles, there is a risk that cooling may not be adequate or that only partial sections of the enclosure are cooled.

Note on temperature settings:
With the Comfort controller, the temperature is preset in the factory to +35°C. In order to save energy, do not set the temperature lower than that actually necessary.

Note on useful cooling output:
Interactive performance diagrams for calculating the useful cooling output may be found at www.rittal.com.
6 Operation

6.2.4 Editable parameters
See also Fig. 17 on page 22.

<table>
<thead>
<tr>
<th>Progr. level</th>
<th>Display screen</th>
<th>Parameter</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Factory setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>St</td>
<td>Internal enclosure temperature setpoint T_i</td>
<td>20</td>
<td>68</td>
<td>35</td>
<td>The setting of the enclosure internal temperature is preset at the factory to 35°C and may be altered within a range of 20 – 55°C.</td>
</tr>
<tr>
<td>2</td>
<td>Mod</td>
<td>Control mode</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Control mode setting. The temperature control is made as factory setting with the magnetic valve (0). It is, however, possible to change the temperature control by starting and stopping the internal fan (1); the magnetic valve then remains permanently open. You must obtain the manufacturer’s consent before changing to control mode (1).</td>
</tr>
<tr>
<td>3</td>
<td>Ad</td>
<td>Master-slave identifier</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>See “6.2.7 Setting the master-slave identifier”, page 23.</td>
</tr>
<tr>
<td>4</td>
<td>CF</td>
<td>Temperature conversion °C/°F</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>The temperature display can be switched from °C (0) to °F (1). The corresponding LED displays the current unit of temperature.</td>
</tr>
<tr>
<td>5</td>
<td>H1</td>
<td>Setting for switching difference (hysteresis)</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>The air/water heat exchanger is preset in the factory to a switching hysteresis of 5 K. This parameter should only be changed in consultation with us. Please contact us for advice.</td>
</tr>
<tr>
<td>6</td>
<td>H2</td>
<td>Differential for error message A2</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>If the internal enclosure temperature exceeds the set value by more than 5 K, then error message A2 (enclosure internal temperature too high) appears on the display terminal. If necessary, the differential may be altered here within the range of 3 – 15 K.</td>
</tr>
</tbody>
</table>

Tab. 4: Editable parameters
6 Operation

6.2.5 Programming overview

Fig. 17: Programming overview
6.2.6 Defining system messages for evaluation

System messages are shown on the display screen of the Comfort controller via the displays A1 to A20 and E0. A more detailed explanation of the system messages may be found in section “6.2.8 Evaluating system messages”, page 24. See also Fig. 17 on page 22.

<table>
<thead>
<tr>
<th>Progr. level</th>
<th>Display screen</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Factory setting</th>
<th>Type or location of fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>A01</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>Enclosure door open</td>
</tr>
<tr>
<td>8</td>
<td>A02</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>Internal temperature of enclosure too high</td>
</tr>
<tr>
<td>9</td>
<td>A08</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>Condensate warning</td>
</tr>
<tr>
<td>10</td>
<td>A10</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>Fan blocked or defective</td>
</tr>
<tr>
<td>11</td>
<td>A16</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>Internal temperature sensor</td>
</tr>
<tr>
<td>12</td>
<td>A18</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>EPROM</td>
</tr>
<tr>
<td>13</td>
<td>A19</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>LAN/Master-Slave</td>
</tr>
<tr>
<td>14</td>
<td>A20</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>Voltage drop</td>
</tr>
</tbody>
</table>

Tab. 5: System messages which may be evaluated via relays

The system messages A01 – A20 may additionally be evaluated via two floating system message relays. In this way, one of the two system message relays may be allocated to each system message. (System message relays with change-over and normally open contact: See wiring diagrams at “4.7.2 Installing the power supply”, page 15:
– Terminal 3: NC (normally closed)
– Terminal 4: C (connection of the supply voltage to the system message relay)
– Terminal 5: NO (normally opened)

The NC and NO definitions refer to the de-energised state. As soon as power is applied to the air/water heat exchanger, the system message relay picks up, so that the relay contacts change status (contact 3 – 4 open; contact 4 – 5 closed). This is the normal operating state of the air/water heat exchanger. As soon as a system message occurs or the power supply is interrupted, the relay drops out.

Program system messages with the value
0: System message is not sent to the system message relay, but merely appears in the display
1: System message is evaluated by relay 1
2: System message is evaluated by relay 2

6.2.7 Setting the master-slave identifier

When several air/water heat exchangers are connected together (maximum ten), one of the air/water heat exchangers must be defined as the “master” and the others as “slaves”. For this purpose, assign a corresponding identifier (address) to each air/water heat exchanger which will enable the air/water heat exchanger to be identified in the network. If one of the slave units reaches the set temperature or if the door limit switch function is activated, the affected slave unit will report to the master unit, which then deactivates all the other air/water heat exchangers.

Notes:
– Only one unit may be configured as master, and its identifier must match the number of connected slave units.
– The slave units must have different identifiers.
– The identifiers must be numbered in ascending order without any gaps.
6 Operation

On the **master air/water heat exchanger** (00 = factory setting), set the number of slave units present in the network:

- **01**: Master with 1 slave air/water heat exchanger
- **02**: Master with 2 slave air/water heat exchangers
- **03**: Master with 3 slave air/water heat exchangers
- **04**: Master with 4 slave air/water heat exchangers
- **05**: Master with 5 slave air/water heat exchangers
- **06**: Master with 6 slave air/water heat exchangers
- **07**: Master with 7 slave air/water heat exchangers
- **08**: Master with 8 slave air/water heat exchangers
- **09**: Master with 9 slave air/water heat exchangers

On the **slave air/water heat exchanger** (00 = factory setting), set its own address:

- **11**: Slave air/water heat exchanger no. 1
- **12**: Slave air/water heat exchanger no. 2
- **13**: Slave air/water heat exchanger no. 3
- **14**: Slave air/water heat exchanger no. 4
- **15**: Slave air/water heat exchanger no. 5
- **16**: Slave air/water heat exchanger no. 6
- **17**: Slave air/water heat exchanger no. 7
- **18**: Slave air/water heat exchanger no. 8
- **19**: Slave air/water heat exchanger no. 9

Fig. 18: Master-slave connection (example)

For further connection examples, see “4.7.1 Bus connection (only when interconnecting several units with a Comfort controller)”, page 13.

For details of how to set the identifier, see “6.2.4 Editable parameters”, page 21 or “6.2.5 Programming overview”, page 22, parameter “Ad”.

6.2.8 Evaluating system messages

In the Comfort controller, system messages are indicated by a number in the display.

<table>
<thead>
<tr>
<th>Display screen</th>
<th>System message</th>
<th>Possible cause</th>
<th>Measures to rectify the fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>Enclosure door open</td>
<td>Door open or door limit switch incorrectly positioned</td>
<td>Close door, position door limit switch correctly, check connection if necessary</td>
</tr>
<tr>
<td>A02</td>
<td>Internal temperature of enclosure too high</td>
<td>Cooling capacity inadequate/unit undersized</td>
<td>Check cooling capacity</td>
</tr>
<tr>
<td>A08</td>
<td>Condensate warning</td>
<td>Condensate discharge kinked or blocked</td>
<td>Check condensate drainage; repair any kinks or blockages in the hose</td>
</tr>
<tr>
<td>A10</td>
<td>Fan</td>
<td>Blocked or defective</td>
<td>Clear the blockage; replace if necessary</td>
</tr>
<tr>
<td>A16</td>
<td>Internal temperature sensor</td>
<td>Open or short-circuit</td>
<td>Replace</td>
</tr>
<tr>
<td>A18</td>
<td>EPROM error</td>
<td>New board obstructed</td>
<td>Software update needed (only following board installation with more recent software): Enter the programming level with Code 22; press button 1 and confirm with “Set” until “Acc” appears. Next, disconnect the unit from the mains and reconnect.</td>
</tr>
<tr>
<td>A19</td>
<td>LAN/Master-Slave</td>
<td>Master and slave not connected</td>
<td>Check setting and/or cable</td>
</tr>
<tr>
<td>A20</td>
<td>Voltage drop</td>
<td>Error display not shown</td>
<td>Event is stored in the log file</td>
</tr>
<tr>
<td>E0</td>
<td>Display message</td>
<td>Connection problem between the display and the controller board</td>
<td>Reset: Switch power supply off, then switch on again after approx. two seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cable defective, connection loose</td>
<td>Exchange the boards</td>
</tr>
</tbody>
</table>

Tab. 6: Troubleshooting with the Comfort controller
7 Inspection and maintenance

7.1 General
The air/water heat exchanger is a maintenance-free, hermetically sealed system. The water circuit is checked at the factory for leaks and subjected to a function trial run.
The installed maintenance-free fan is mounted on ball bearings, protected against moisture and dust, and fitted with a temperature monitor. The life expectancy is at least 30,000 operating hours. The air/water heat exchanger is consequently largely maintenance free. If dirt is present in the cooling water, a filter must be fitted.
Maintenance interval: 2,000 operating hours.

Note!
Risk of fire!
Never use flammable liquids for cleaning.

Sequence of maintenance measures:
– Check the level of dirt.
– Activate test mode; cooling function OK?
– Check noise generation of compressor and fans.
8 Storage and disposal

During storage, the air/water heat exchanger must stand upright.
Disposal can be performed at the Rittal plant. Please contact us for advice.

Emptying:
During storage and transportation below freezing point, the air/water heat exchanger should be drained completely in the water supply direction using compressed air. This requires that the magnetic valve be opened.
For the Basic controller: keep the rubberised potentiometer display (5) pressed for ten seconds (for access to the potentiometer, see also 6.1.3).
For the Comfort controller, this is achieved by simultaneously pressing the H2 (°C key) and H4 (/set key) keys for five seconds. The magnetic valve is then opened for approximately five minutes.

Note! Risk of damage!
The air/water heat exchanger must not be subjected to temperatures above +70°C during storage.
9 Technical specifications

- Observe the mains connection data (voltage and frequency) as per the rating plate.
- Observe the pre-fuse as per the specifications on the rating plate.

Fig. 25: Rating plate (technical data)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Basic controller, RAL 7035</th>
<th>Comfort controller, RAL 7035</th>
<th>Rated voltage</th>
<th>Rated current</th>
<th>Pre-fuse T</th>
<th>Motor circuit-breaker</th>
<th>Transformer circuit-breaker</th>
<th>Miniature circuit-breaker</th>
<th>Useful cooling output Q_k to DIN 3168</th>
<th>Volumetric flow</th>
<th>Admissible pressure</th>
<th>Water inlet temperature</th>
<th>Temperature setting range</th>
<th>Noise level</th>
<th>Type of connection</th>
<th>Protection category to EN 60 529</th>
<th>Dimensions (W x H x D)</th>
<th>Air throughput of the fans (unimpeded air flow)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>V Hz</td>
<td>A</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>L 35 W 10</td>
<td>l/h</td>
<td>bar</td>
<td>°C</td>
<td>°C</td>
<td>dB (A)</td>
<td>–</td>
<td>–</td>
<td>mm</td>
<td>m³/h</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>3363.100</td>
<td>3363.110</td>
<td>230, 1–, 50/60</td>
<td>0.17/0.18</td>
<td>6.0/6.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>500</td>
<td>400</td>
<td>1 to 10</td>
<td>+1 to ±30</td>
<td>+1 to +70</td>
<td>58</td>
<td>Plug-in terminal strip</td>
<td>IP 55</td>
<td>280 x 550 x 92</td>
<td>270/320</td>
<td>12</td>
</tr>
</tbody>
</table>
9 Technical specifications

<table>
<thead>
<tr>
<th>Model No. SK</th>
<th>Unit</th>
<th>Basic controller, RAL 7035</th>
<th>Comfort controller, RAL 7035</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3364.100 3364.110 3364.140</td>
<td>3364.104 3364.114 3364.144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3364.500 3364.510 3364.540</td>
<td>3364.504 3364.514 3364.544</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>V Hz</td>
<td>230, 1~ 50/60 115, 1~ 50/60 400, 2~ 50/60</td>
<td>230, 1~ 50/60 115, 1~ 50/60 400, 2~ 50/60</td>
</tr>
<tr>
<td>Rated current</td>
<td>A</td>
<td>0.2/0.19 0.4/0.38 0.12/0.11 0.2/0.19 0.4/0.38 0.12/0.11</td>
<td>0.6/0.6 0.6/0.6 0.6/0.6 0.6/0.6 0.6/0.6 0.6/0.6</td>
</tr>
<tr>
<td>Pre-fuse T</td>
<td></td>
<td>6.0/6.0 6.0/6.0 6.0/6.0 6.0/6.0 6.0/6.0 6.0/6.0</td>
<td></td>
</tr>
<tr>
<td>Motor circuit-breaker</td>
<td></td>
<td>– – – – – –</td>
<td>– – – – – –</td>
</tr>
<tr>
<td>Transformer circuit-breaker</td>
<td></td>
<td>– – – – – –</td>
<td>– – – – – –</td>
</tr>
<tr>
<td>Miniature circuit-breaker</td>
<td></td>
<td>– – – – – –</td>
<td>– – – – – –</td>
</tr>
<tr>
<td>Useful cooling output Q_k</td>
<td>W</td>
<td>1000</td>
<td>750</td>
</tr>
<tr>
<td>Volumetric flow</td>
<td>l/h</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Admissible pressure</td>
<td>bar</td>
<td>1 to 10</td>
<td>1 to 10</td>
</tr>
<tr>
<td>Water inlet temperature</td>
<td>°C</td>
<td>+1 to +30</td>
<td>+1 to +30</td>
</tr>
<tr>
<td>Temperature setting range</td>
<td>°C</td>
<td>+1 to +70</td>
<td>+1 to +70</td>
</tr>
<tr>
<td>Noise level</td>
<td>dB (A)</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>Type of connection</td>
<td></td>
<td>– Plug-in terminal strip</td>
<td>– Plug-in terminal strip</td>
</tr>
<tr>
<td>Protection category to EN 60 529</td>
<td></td>
<td>– IP 55</td>
<td>– IP 55</td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>mm</td>
<td>280 x 550 x 142</td>
<td>400 x 950 x 142</td>
</tr>
<tr>
<td>Air throughput of the fans</td>
<td>m³/h</td>
<td>270/320</td>
<td>600/625</td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>
Basic controller, RAL 7035

<table>
<thead>
<tr>
<th>Model No. SK</th>
<th>3374.100</th>
<th>3374.110</th>
<th>3374.140</th>
<th>3374.104</th>
<th>3374.114</th>
<th>3374.144</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>230, 1–, 50/60</td>
<td>115, 1–, 50/60</td>
<td>400, 2–, 50/60</td>
<td>230, 1–, 50/60</td>
<td>115, 1–, 50/60</td>
<td>400, 2–, 50/60</td>
</tr>
<tr>
<td>Rated current</td>
<td>A</td>
<td>0.57/0.78</td>
<td>1.15/1.55</td>
<td>0.35/0.45</td>
<td>0.57/0.78</td>
<td>1.15/1.55</td>
</tr>
<tr>
<td>Pre-fuse T</td>
<td>A</td>
<td>6.0/6.0</td>
<td>6.0/6.0</td>
<td>6.0/6.0</td>
<td>6.0/6.0</td>
<td>6.0/6.0</td>
</tr>
<tr>
<td>Motor circuit-breaker</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Transformer circuit-breaker</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Miniature circuit-breaker</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Useful cooling output Qₖ to DIN 3168</td>
<td>L₃5 W₁₀</td>
<td>3000</td>
<td>2250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumetric flow</td>
<td>l/h</td>
<td>400</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admissible pressure</td>
<td>bar</td>
<td>1 to 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water inlet temperature</td>
<td>°C</td>
<td>+1 to ±30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature setting range</td>
<td>°C</td>
<td>+1 to +70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise level</td>
<td>dB (A)</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of connection</td>
<td>–</td>
<td>Plug-in terminal strip</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection category to EN 60 529</td>
<td>–</td>
<td>IP 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>mm</td>
<td>400 x 950 x 142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air throughput of the fans (unimpeded air flow)</td>
<td>m³/h</td>
<td>700/730</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comfort controller, RAL 7035

<table>
<thead>
<tr>
<th>Model No. SK</th>
<th>3375.100</th>
<th>3375.110</th>
<th>3375.140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>230, 1–, 50/60</td>
<td>115, 1–, 50/60</td>
<td>400, 2–, 50/60</td>
</tr>
<tr>
<td>Rated current</td>
<td>A</td>
<td>1.0/1.35</td>
<td>2.0/2.7</td>
</tr>
<tr>
<td>Pre-fuse T</td>
<td>A</td>
<td>6.0/6.0</td>
<td>6.0/6.0</td>
</tr>
<tr>
<td>Motor circuit-breaker</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Transformer circuit-breaker</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Miniature circuit-breaker</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Useful cooling output Qₖ to DIN 3168</td>
<td>L₃5 W₁₀</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Volumetric flow</td>
<td>l/h</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Admissible pressure</td>
<td>bar</td>
<td>1 to 10</td>
<td></td>
</tr>
<tr>
<td>Water inlet temperature</td>
<td>°C</td>
<td>+1 to ±30</td>
<td></td>
</tr>
<tr>
<td>Temperature setting range</td>
<td>°C</td>
<td>+1 to +70</td>
<td></td>
</tr>
<tr>
<td>Noise level</td>
<td>dB (A)</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Type of connection</td>
<td>–</td>
<td>Plug-in terminal strip</td>
<td></td>
</tr>
<tr>
<td>Protection category to EN 60 529</td>
<td>–</td>
<td>IP 55</td>
<td></td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>mm</td>
<td>450 x 1400 x 250</td>
<td></td>
</tr>
<tr>
<td>Air throughput of the fans (unimpeded air flow)</td>
<td>m³/h</td>
<td>2365/2750</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>
10 List of spare parts

Fig. 26: Spare parts for SK 3363.xxx

Fig. 27: Spare parts for SK 3364.xxx
Fig. 28: Spare parts for SK 3373.xxx/SK 3374.xxx and SK 3375.xxx

Legend
10 Fan, complete
15 Dispatch bag
32 Magnetic valve, complete
33 Non-return valve
40 Controller board
55 Display
71 Temperature sensor
73 Leak detection
75 Enclosure tray
91 Heat exchanger

Note:
As well as the spare part number, when ordering spare parts the following information must be provided:
- Unit model
- Fabrication number
- Date of manufacture
This information may be found on the rating plate.
11 Further technical information

11.1 Hydrological data

To avoid system damage and to ensure safe operation, Rittal GmbH & Co. KG recommends the use of system water or an additive whose composition does not differ from that presented in the following summary:

<table>
<thead>
<tr>
<th>Hydrological data</th>
<th>Unit</th>
<th>Model No. SK</th>
<th>Model No. SK<sup>1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH value</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>7 – 8.5</td>
<td>6 – 9</td>
<td></td>
</tr>
<tr>
<td>Calcium hardness</td>
<td>°dH</td>
<td>3 < 8</td>
<td>1 – 12</td>
</tr>
<tr>
<td>Free carbonic acid</td>
<td>mg/dm³</td>
<td>8 – 15</td>
<td>1 – 100</td>
</tr>
<tr>
<td>Corresponding carbonic acid</td>
<td>mg/dm³</td>
<td>8 – 15</td>
<td>Zero</td>
</tr>
<tr>
<td>Aggressive carbonic acid</td>
<td>mg/dm³</td>
<td>0</td>
<td>0 – 400</td>
</tr>
<tr>
<td>Sulphides</td>
<td>mg/dm³</td>
<td>Zero</td>
<td>Zero</td>
</tr>
<tr>
<td>Oxygen</td>
<td>mg/dm³</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>Chloride ions</td>
<td>mg/dm³</td>
<td>< 50</td>
<td>< 200</td>
</tr>
<tr>
<td>Sulphate ions</td>
<td>mg/dm³</td>
<td>< 250</td>
<td>< 500</td>
</tr>
<tr>
<td>Nitrates and nitrites</td>
<td>mg/dm³</td>
<td>< 10</td>
<td>< 100</td>
</tr>
<tr>
<td>COD</td>
<td>mg/dm³</td>
<td>< 7</td>
<td>< 40</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/dm³</td>
<td>< 5</td>
<td>< 20</td>
</tr>
<tr>
<td>Iron</td>
<td>mg/dm³</td>
<td>< 0.2</td>
<td>Zero</td>
</tr>
<tr>
<td>Manganese</td>
<td>mg/dm³</td>
<td>< 0.2</td>
<td>Zero</td>
</tr>
<tr>
<td>Conductivity</td>
<td>μS/cm</td>
<td>< 2200</td>
<td>< 4000</td>
</tr>
<tr>
<td>Evaporation residue</td>
<td>mg/dm³</td>
<td>< 500</td>
<td>< 2000</td>
</tr>
<tr>
<td>Potassium permanganate</td>
<td>mg/dm³</td>
<td>< 25</td>
<td>< 40</td>
</tr>
<tr>
<td>Suspended matter</td>
<td>mg/dm³</td>
<td>< 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mg/dm³</td>
<td>> 3 < 15; partial current purification recommended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mg/dm³</td>
<td>> 15; continuous purification recommended</td>
<td></td>
</tr>
</tbody>
</table>

¹⁾ The complete absence of corrosion under experimental conditions suggests that solutions with a significantly higher salt content and greater corrosion potential (such as seawater) can still be tolerated.

Tab. 7: Hydrological data
11.2 Characteristic curves

11.2.1 Water resistance

Fig. 29: Water resistance SK 3363.xxx

Fig. 30: Water resistance SK 3364.xxx

ΔP: water resistance [mbar]
V: volumetric flow [l/h]
11 Further technical information

Fig. 31: Water resistance SK 3373.xxx

Fig. 32: Water resistance SK 3374.xxx
Fig. 33: Water resistance SK 3375.xxx

ΔP: water resistance [mbar]
V: volumetric flow [l/h]
Appendix 1: Cut-out and hole sizes

12.1 Dimensions for external mounting

Mounting cut-out for external mounting

Mounting cut-out for internal mounting

1. Ø 6.5 (4x for internal and external mounting)
2. Water connections 1/2"
3. Condensate discharge 1/2"

Fig. 34: SK 3363.xxx/SK 3364.xxx external mounting

1. Condensate discharge 1/2"
2. Water connections 1/2"

Fig. 35: SK 3373.xxx/SK 3374.xxx external mounting
Cut-out and hole sizes

<table>
<thead>
<tr>
<th>Mounting cut-out for external mounting</th>
<th>Mounting cut-out for internal mounting</th>
<th>External mounting</th>
<th>Internal mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Condensate discharge 1/2"
2. Water connections 1/2"

Fig. 36: SK 3375.xxx
13 Appendix 2: Preparation and maintenance of the water in recooling systems

Depending on the type of installation to be cooled, certain requirements are placed on the cooling water with respect to purity. According to the level of contamination and the size and design of the recooling systems, a suitable process is used to prepare and/or maintain the water.

The most common types of contamination and most frequently used techniques to eliminate them in industrial cooling are:

<table>
<thead>
<tr>
<th>Contamination of the water</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical contamination</td>
<td>Filter the water using:</td>
</tr>
<tr>
<td></td>
<td>– Mesh filter</td>
</tr>
<tr>
<td></td>
<td>– Gravel filter</td>
</tr>
<tr>
<td></td>
<td>– Cartridge filter</td>
</tr>
<tr>
<td></td>
<td>– Precoated filter</td>
</tr>
<tr>
<td>Excessive hardness</td>
<td>Softening of the water via ion exchange</td>
</tr>
<tr>
<td>Moderate content of mechanical contaminants and hardness components</td>
<td>Addition of stabilisers and/or dispersing agents to the water</td>
</tr>
<tr>
<td>Moderate content of chemical contaminants</td>
<td>Addition of passifiers and/or inhibitors to the water</td>
</tr>
<tr>
<td>Biological contaminants, slime bacteria and algae</td>
<td>Addition of biocides to the water</td>
</tr>
</tbody>
</table>

Tab. 8: Water contaminants